发表论文

 

2022

1. Yan XX, An J, et al. Heavy metals uptake and translocation of typical wetland plants and their ecological effects on the coastal soil of a contaminated bay in Northeast China. Science of the Total Environment. 2022, 803: 149871.1, SCI Q2, Top, IF=7.96

2. Xu L, Dai HP,et al. The effects of different electrode materials on seed germination of Solanum nigrum L. and its Cd accumulation in soil. Journal of Environmental Sciences. 2022, 113:291-299.1, SCI Q2, IF=5.565

2021

1. Xu L, Wei SH, et al. Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites. Chemosphere, 2021, 285: 131350.1, SCI Q2, Top, IF=7.086

2. Dai H, Wei SH, et al. In search of the exclusion/low-accumulation mechanisms: Cadmium uptake and accumulation from soil by cultivated (Solanum melongena L.) and wild eggplants (Solanum torvum L.). Journal of Cleaner Production, 2021, 323: 129141.2, SCI Q1, Top, IF=9.297

3. Han R, Dai H, et al. The potential of medicinal plant extracts in improving the phytoremediation capacity of Solanum nigrum L. for heavy metal contaminated soil[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112411.1, SCI Q2Top, IF=6.291

4. Han R, Dai H, et al. Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil. Chemosphere, 2021, 278: 130446.1, SCI Q2, Top, IF=7.086

5. Zheng T, Liu R, et al. Fire Phoenix plant mediated microbial degradation of pyrene: Increased expression of functional genes and diminishing of degraded products. Chemical Engineering Journal, 2021, 407: 126343.2, SCI Q1, Top, IF=13.273

6. Li N, Liu R, et al. Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium. Science of The Total Environment, 2021, 754: 141198.1标,SCI Q2TopIF=7.963

7. Dai H, Wei S, et al. The cadmium accumulation differences of two Bidens pilosa L. ecotypes from clean farmlands and the changes of some physiology and biochemistry indices. Ecotoxicology and Environmental Safety, 2021, 209: 111847.2标,SCI Q2TopIF=6.291

8 .Dai H, Wei S, et al. Phytoremediation of two ecotypes cadmium hyperaccumulator Bidens pilosa L. sourced from clean soils. Chemosphere, 2021, 273: 129652.2, SCI Q2, Top, IF=7.086

9.安婧, 高程程, . 生物炭对外源抗生素及其抗性基因的吸附行为与去除机制.生态学杂志,2021,40(04):1210-1221.1标)

10.孔祥方,魏树和, .旺盛期烟草对镉富集敏感性研究.中国环境科学, 2021, 41(10): 4872-4877.2标)

11.徐雷, 代惠萍, . 淋洗剂在重金属污染土壤修复中的研究进展. 中国环境科学, 2021, 41 (11): 5237-5244.1标)

2020

1. Dai H, Wei S, et al. The mechanism of chelator improved the tolerance and accumulation of poplar to Cd explored through differential expression protein based on iTRAQ. Journal of hazardous materials, 2020, 393: 122370.2标,SCI Q1TopIF=10.588

2. Han R, Dai H, et al. Aqueous extracts from the selected hyperaccumulators used as soil additives significantly improve accumulation capacity of Solanum nigrum L. for Cd and Pb. Journal of hazardous materials, 2020, 394: 122553.1标,SCI Q1TopIF=10.588

3. Xu L, Dai H, et al. The effects of different electric fields and electrodes on Solanum nigrum L. Cd hyperaccumulation in soil. Chemosphere, 2020, 246: 125666.1标,SCI Q2TopIF=7.086

4. Yang W, Dai H, et al. The front-heavy and back-light nitrogen application mode to increase stem and leaf biomass significantly improved cadmium accumulation in Solanum nigrum L. Journal of hazardous materials, 2020, 393: 122482.1标,SCI Q1TopIF=10.588

5. Xu L, Dai H, et al. Optimal voltage and treatment time of electric field with assistant Solanum nigrum L. cadmium hyperaccumulation in soil. Chemosphere, 2020, 253: 126575. 1标,SCI Q2TopIF=7.086

6. Dai H, Wei S, et al. Effects of different soil pH and nitrogen fertilizers on Bidens pilosa L. Cd accumulation. Environmental Science and Pollution Research, 2020, 27(9): 9403-9409.2标,SCI Q2IF=4.223

7. Dai H, Wei S, et al. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system. Ecotoxicology and environmental safety, 2020, 190: 110176. 2标,SCI Q2IF=6.291

8. Dai H, Wei S, et al. Biofortification of soybean (Glycine max L.) with Se and Zn, and enhancing its physiological functions by spiking these elements to soil during flowering phase. Science of The Total Environment, 2020, 740: 139648.2标,SCI Q2TopIF=7.963

9. Dou X, Dai H, et al. Strong accumulation capacity of hyperaccumulator Solanum nigrum L. for low or insoluble Cd compounds in soil and its implication for phytoremediation. Chemosphere, 2020, 260: 127564.1标,SCI Q2TopIF=7.086

10. Dai Y, Liu R, et al. Fire Phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environment international, 2020, 136: 105421.1标,SCI Q1TopIF=9.621

11. Jin C, Wei S, et al. The Forms, Distribution, and Risk Assessment of Sulfonamide Antibiotics in the Manure–Soil–Vegetable System of Feedlot Livestock. Bulletin of Environmental Contamination and Toxicology, 2020, 105(5): 790-797.2标,SCI Q4IF=2.151

2019

1. Han R, Dai H, et al. Stem aqueous extracts of accumulator Bidens tripartita L. strongly promoted Solanum nigrum L. Cd hyperaccumulation from soil. Plant and Soil, 2019, 443(1): 401-411.1标,SCI Q2TopIF=4.192

2. Dou X, Dai H, et al. Effects of Some Chelators and Surfactants on Hyperaccumulator Sedum alfredii Hance Remediating Contaminated Soil. Soil and Sediment Contamination: An International Journal, 2019, 28(8): 747-756.1标,SCI Q3IF=2.061

3. Feller U, Wei S, et al. Distribution and redistribution of 109Cd and 65Zn in the heavy metal hyperaccumulator Solanum nigrum L.: influence of cadmium and zinc concentrations in the root medium. Plants, 2019, 8(9): 340.3标,SCI Q3IF=3.935

4. Dou X, Dai H, et al. Bidens pilosa L. hyperaccumulating Cd with different species in soil and the role of EDTA on the hyperaccumulation. Environmental Science and Pollution Research, 2019, 26(25): 25668-25675.1标,SCI Q3IF=4.223

5. Dai H, Wei S, et al. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation. Ecotoxicology and environmental safety, 2019, 180: 179-184.2标,SCI Q2IF=6.291

6. Zhan J, Twardowska I, et al. Prospective sustainable production of safe food for growing population based on the soybean (Glycine max L. Merr.) crops under Cd soil contamination stress. Journal of Cleaner Production, 2019, 212: 22-36.1标,SCI Q1TopIF=9.297

7. Dou X, Dai H, et al. Hyperaccumulation of Cd by Rorippa globosa (Turcz.) Thell. from soil enriched with different Cd compounds, and impact of soil amendment with glutathione (GSH) on the hyperaccumulation efficiency. Environmental Pollution, 2019, 255: 113270.1标,SCI Q2TopIF=8.071

8. An J, Zhang L, et al. Mercury uptake by Desulfovibrio desulfuricans ND132: passive or active?. Environmental science & technology, 2019, 53(11): 6264-6272.2标,SCI Q1TopIF=9.028

9. Han R, Dai H, et al. Clean extracts from accumulator efficiently improved Solanum nigrum L. accumulating Cd and Pb in soil. Journal of cleaner production, 2019, 239: 118055.1标,SCI Q1TopIF=9.297

10. Yang W, Dai H, et al. Strengthening role and the mechanism of optimum nitrogen addition in relation to Solanum nigrum L. Cd hyperaccumulation in soil. Ecotoxicology and environmental safety, 2019, 182: 109444.1标,SCI Q2IF=6.291

11. Yang W, Dai H, et al. Effect and mechanism of commonly used four nitrogen fertilizers and three organic fertilizers on Solanum nigrum L. hyperaccumulating Cd. Environmental Science and Pollution Research, 2019, 26(13): 12940-12947.1标,SCI Q3IF=4.223

12. Hou L, Liu R, et al. Study on the efficiency of phytoremediation of soils heavily polluted with PAHs in petroleum-contaminated sites by microorganism. Environmental Science and Pollution Research, 2019, 26(30): 31401-31413. 1标,SCI Q3IF=4.223

13. Zhang Q, Wang J,et al. Ball-milled biochar for galaxolide removal: Sorption performance and governing mechanisms. Science of the Total Environment, 2019, 659: 1537-1545.1标,SCI Q2TopIF=7.963

14. Xu M, Halimu G, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Science of the Total Environment, 2019, 694: 133794. 1标,SCI Q2TopIF=7.963

15.张立娜,王芷茵,.底泥中三氯生残留对轮叶黑藻的生态毒性效应.农业环境科学学报,2019,38(09):2057-2065.1标)

16.张庆,魏树和,.硒对茶树镉毒害的缓解作用研究.南京林业大学学报(自然科学版),2020,44(01):200-204.3标)

17.赖秋羽,魏树和,.番茄光合荧光特性及其镉吸收对土壤镉污染的响应.中国环境科学,2019,39(11):4737-4742.2标)

18.王茜,侯楠,张庆,孔祥方,魏树和,代惠萍.锌超积累植物生理响应研究.园艺与种苗,2019,39(09):4-6.2标)

19.宫晓双,安婧,.典型抗生素复合污染对小白菜生长发育的毒理效应.生态学杂志,2019,38(02):541-547.1标)

20.魏树和,徐雷,.重金属污染土壤的电动-植物联合修复技术研究进展.南京林业大学学报(自然科学版),2019,43(01):154-160.1标)

2018

1. Ma S, Zeng X, et al. The differences in bioaccumulation and effects between Se (IV) and Se (VI) in the topmouth gudgeon Pseudorasbora parva. Scientific reports, 2018, 8(1): 1-12.1标,SCI Q3IF=4.379

2. Han R, Dai H, et al. Enhanced phytoremediation of cadmium and/or benzo (a) pyrene contaminated soil by hyperaccumlator Solanum nigrum L. International journal of phytoremediation, 2018, 20(9): 862-868.1标,SCI Q3IF=3.212

3. Wei S, Xu L, et al. Ornamental hyperaccumulator Mirabilis jalapa L. phytoremediating combine contaminated soil enhanced by some chelators and surfactants. Environmental Science and Pollution Research, 2018, 25(29): 29699-29704.1标,SCI Q3IF=4.223

4. Chen H, Zeng X, et al. Effects of acute and chronic exposures of fluoxetine on the Chinese fish, topmouth gudgeon Pseudorasbora parva. Ecotoxicology and environmental safety, 2018, 160: 104-113.1标,SCI Q2IF=6.291

5. Ma S, Zeng X, et al. The differences in bioaccumulation and effects between Se (IV) and Se (VI) in the topmouth gudgeon Pseudorasbora parva. Scientific reports, 2018, 6(1): 1-12.1标,SCI Q3IF=4.38

7.张倩茹,姜丽思,.纳米二氧化钛对佳乐麝香所引起的沙蚕(Perinereis aibuhitensis)神经毒性的影响.农业环境科学学报,2018,37(04):665-672. 1标)

8.张立娜,宫晓双,.三氯生的环境残留、降解代谢及其潜在生态风险.应用生态学报,2018,29(09):3139-3146.1标)

9.朱佳妮,代惠萍,.花期追施锌肥对大豆生长和锌素积累的影响.作物杂志,2018(01):152-155.3标)

10.张晓薇,王恩德,.辽阳弓长岭铁矿区重金属污染评价.生态学杂志, 2018, 37(06):1789-1796.3标)

11.张阿芳,张庆,.镉胁迫对银灰杨根和叶片渗透调节物质的影响.西北林学院学报, 2018,33(02):83-87.3标)

2017

1. Wei S H. Effects of cadmium on the antioxidative defense system and biomass accumulation of Populus× canescens. Bangladesh Journal of Botany, 2017, 46(3): 865-870.3标,SCI Q4IF=0.308

2. Dai H, Wei S, et al. Hyperaccumulating potential of Bidens pilosa L. for Cd and elucidation of its translocation behavior based on cell membrane permeability. Environmental Science and Pollution Research, 2017, 24(29): 23161-23167.2标,SCI Q3IF=4.223

3. Wang M, Yang Z, et al. Performance improvement of microbial fuel cells by lactic acid bacteria and anode modification. Environmental Engineering Science, 2017, 34(4): 251-257.3标,SCI Q4IF=1.907

4. Siqi W, Shuhe W, et al. Comparison of soybean cultivars enriching Cd and the application foreground of the low-accumulating cultivar in production. Pol. J. Environ. Stud., 2017, 26(3): 1299-1304.1标,SCI Q4IF=1.699

5. Hu X M, An J, et al. Joint effects of galaxolide and cadmium on soil microbial community function and abundance. Journal of Agro-Environment Science, 2017, 36(1): 66-75.2标,SCI Q4IF=0.219

6. 朱峰,苏丹,安婧,宫晓双.磺胺类抗生素在土壤-植物系统中的迁移特征.生态学杂志,2017,36(05):1402-1407.2标)

7. 律泽,胡筱敏,.佳乐麝香与镉复合污染对土壤微生物群落功能和丰度的影响.农业环境科学学报,2017,36(01):66-75.2标)

2016

1. Wei S, Bai J, et al. Compound amino acids added in media improved Solanum nigrum L. phytoremediating Cd-PAHs contaminated soil. International journal of phytoremediation, 2016, 18(4): 358-363.1标,SCI Q3IF=3.212

2. 张倩茹,姜丽思,牟文燕,李斯雯,魏树和.双齿围沙蚕诱导型热休克蛋白70基因的克隆及Cu胁迫下的表达分析.应用生态学报,2016,27(05):1628-1638.1标)

3. 张倩茹,姜丽思,牟文燕,李斯雯,魏树和.双齿围沙蚕诱导型热休克蛋白70基因的克隆及Cu胁迫下的表达分析.应用生态学报,2016,27(05):1628-1638.1标)


附件下载: