2005.09-2009.07 山西师范大学 地理科学
2009.09-2012.07 福建师范大学 自然地理学
2012.09-2015.06 永利娱高ylg060net 土壤学
2013.09-2014.03 美国加州大学戴维斯分校 联合培养博士
2015.07-2018.08 永利娱高ylg060net 助理研究员
2018.09-2020.11 永利娱高ylg060net 副研究员
2019.09-2020.02 美国西弗吉尼亚大学植物土壤学院 访问学者
2020.12-至今 永利娱高ylg060net 研究员
土壤有机质形成机理
微生物多样性与功能
全球变化与森林碳汇
2015年获得中国科学院院长特别奖
2016年获得中国科学院百篇优秀博士论文奖
2018年中国科学院青年创新促进会会员
2019年辽宁省百千万人才“千”层次
2019年中国科学院西部东北地区人才项目
2022年中国科学院优秀共产党员称号
2022年中国科学院青年创新促进会优秀会员
重点研发国际合作项目:增温对森林土壤碳汇功能的影响机制,2024-2026
自然基金委优秀青年项目:土壤生物地球化学,2024-2026
自然基金委面上项目:从微生物生物周期角度分析增温影响土壤有机碳周转机制,2024-2027
中国科学院青促会优秀会员项目:增温对微生物死亡残体的影响,2023-2025
中国科学院青年促进会项目:微生物死亡残体形成与稳定机制,2018-2021
长白山地理过程与生态重点实验室开放课题:增温对阔叶红松林土壤微生物残体分解的影响,2019-2020
中国科学院基础前沿创新项目课题:土壤微生物特征对森林生态系统稳定性的影响,2019-2023
中国科学院黑土专项任务:作物根系水肥高效利用体系构建和技术,2021-2025
沈阳生态所自主重大任务子课题:东北陆地生态系统碳汇精准计量与提升技术,2022-2025
国家基金委青年项目:森林土壤微生物残体氮素周转及其对土壤有机氮贡献研究,2016-2019
[1] Qu L, Wang C*, Manzoni S, Dacal M, Maestre FT, Bai E. (2024). Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. The ISME Journal. 10.1093/ismejo/wrae025.
[2] Wang X, Wang C*, Fan X, Sun L, Sang C, Wang XG, Jiang P, Fang YT, Bai E*. (2024). Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils: Insights from an isotope tracing model. Global Change Biology, 30, e17156.
[3] Lyu M, Chen S, Zhang Q, Yang Z, Xie J, Wang C, Wang XH, Liu XF, Xiong DC, Xu Chao, Yang, Y. (2024). Rapid positive response of young trees growth to warming reverses nitrogen loss from subtropical soil. Functional Ecology. https://doi.org/10.1111/1365-2435.14526.
[4] Wang C*, Wang X, Zhang Y, Morrissey E, Liu Y, Sun L, Qu LR, Sang CP, Zhang H, Li GC*, Zhang LL, Fang, Y. (2023). Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. ISME Communications, 3, 86.
[5] Walkup J, Dang C, Mau R L, Hayer M, Schwartz E, Stone BW, Hofmockerl KS, Koch BJ, Purcell AM, Pett-Ridge J, Wang C, Hungate BA, Morrissey EM*. (2023). The predictive power of phylogeny on growth rates in soil bacterial communities. ISME Communications, 3, 73.
[6] Sun L*, Moorhead DL, Cui Y, Wanek W, Li S, Wang C. (2023). Exogenous nitrogen input skews estimate of microbial nitrogen use efficiency by ecoenzymatic stoichiometry. Ecological Processes, 12, 46.
[7] Sun L, Li J, Qu L, Wang X, Sang C, Wang J, Wang C*. (2023). Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments. Geoderma, 432, 116416.
[8] He P, Ling N, Lü XT, Zhang HY, Wang C, Wang RZ, Wei CZ, Yao J, Wang XB*, Han XG, Nan, Z. (2023). Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology, 188, 104881.
[9] Yu H, Duan Y, Mulder J, Dörsch P, Zhu W, Xu R, Huang K, Zheng Z, Wang C, Zhu FF, Liu DW, Peng SS, Han SJ, Zhang YJ*, Fang Y*. (2023). Universal temperature sensitivity of denitrification nitrogen losses in forest soils. Nature Climate Change, 13, 726-734.
[10] Wang Z, Yang J, Wang C, Bai E. (2022). Oxygen gas derived oxygen does not affect the accuracy of 18O-labelled water approach for microbial carbon use efficiency. Soil Biology and Biochemistry, 168.108649
[11] Cao YW. Liu XM, Wang C, Bai E, Wu N. (2022). Rare earth element geochemistry in soils along arid and semiarid grasslands in northern China. Ecological Processes, 11(1), 29.
[12] Chang Q, Xu W, Peng B, Jiang P, Li S, Wang C, Bai E. (2022). Dynamic and allocation of recently assimilated carbon in Korean pine (Pinus koraiensis) and birch (Betula platyphylla) in a temperate forest. Biogeochemistry, 160, 395-407.
[13] Wang C, Morrissey EM*, Mau RL., Hayer M, Piñeiro JMack MC, Marks JC, Bell SL, Miller SN, Schwartz E, Dijkstra P, Koch BJ, Stone BW, Purcell AM, Blazewicz SJ, Hofmockel KS, Pett-Ridge J, Hungate BA, 2021. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. The ISME Journal, 15, 2738-2747.
[14] Wang C, Qu, LR, Yang, LM, Morrissey, E, Miao RH, Liu ZP, Wang QK, Fang YT, Bai E*. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology 27, 2039-2048.
[15] Li J, Sang C, Yang J, Qu L, Xia Z, Sun H, Jiang P, Wang X, He H, Wang C*, 2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry, 156, 108207.
[16] Sun, L., Wang, C.*, Yu, H., Liu, D., Houlton, B. Z., Wang, S., Zeng, X*, Bai, E., Fang YT, Jia, Y. (2021). Biotic and abiotic controls on dinitrogen production in coastal sediments. Global Biogeochemical Cycles, 35, e2021GB007069.
[17] Sang CP, Xia ZW*, Sun LF, Sun H, Jiang P, Wang C*, Bai E, 2021. Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest. Ecological Processes, 10: 66
[18] Dai W, Peng B, Liu J, Wang C, Wang X, Jiang P, Bai E, 2021. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry, 154, 371-383.
[19] Wang X, Dai W, Filley TR, Wang C, Bai E, 2021. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry, 161, 108381.
[20] Fan X, Gao D, Zhao C, Wang C, Qu Y, Zhang J, Bai E*, 2021. Improved model simulation of soil carbon cycling by representing microbial-derived organic carbon pool. The ISME Journal, 15, 2248-2263.
[21] Wang X, Wang C*, Cotrufo MF, Sun L, Jiang P, Liu Z, Bai E*, 2020. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Global Change Biology 26, 5277–5289.
[22] Wang C, Wang X, Pei GT, Xia ZW, Peng B, Sun LF, Wang J, Gao DC, Chen SD, Liu DW, Dai WW, Jiang P, Fang YT, Liang C, Wu NP, Bai E*, 2020. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry 141, 107687.
[23] Qu LR, Wang C*, Bai E*, 2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology and Biochemistry. 145, 107802.
[24] Xia ZW, Yang JY, Sang CP, Wang X, Sun LF, Jiang P, Wang C*, Bai E, 2020. Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms 8, 1828.
[25] Chang Q, Qu G, Xu W, Wang C, Cheng W, Bai E*, 2020. Light availability controls rhizosphere priming effect of temperate forest trees. Soil Biology and Biochemistry 148, 107895.
[26] Pei GT, Liu J, Peng B, Wang C, Jiang P, Bai E*, 2020. Non-linear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences 125, e2019JG005462.
[27] Houlton BZ*, Almaraz M, Aneja V, Austin AT, Bai E, Cassman KG, Compton JE, Davidson EA, Erisman JW, Galloway JN, Gu BJ, Yao G, Martinelli, LA, Scow K, Schlesinger WH, Tomich TP, Wang C, Zhang X, 2019. A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future 7, 865– 872.
[28] Hou JF, Dijkstra FA, Zhang XW, Wang C, Lü XT, Wang P, Han XG, and Cheng WX*, 2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China, Peer J, 7, e6712.
[29] Sun LF, Sang CP, Wang C, Fan ZZ, Peng B, Jiang P, and Xia ZW*, 2019. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature, Journal of Soils and Sediments 19, 3499–3511.
[30] Sun LF, Xia ZW, Sang CP, Wang X, Peng B, Wang C, Zhang J, Müller C, Bai E, 2019. Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture. Biology and Fertility of Soils 55, 629-641.
[31] Pei GT, Liu J, Peng B, Gao DC, Wang C, Dai WW, Jiang P, and Bai E*, 2019. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem, Forest Ecology and Management 440, 61-69.
[32] Peng B, Sun JF, Liu J, Dai WW, Sun LF, Pei GT, Gao DC, Wang C, Jiang P, Bai E*, 2019. N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of The Total Environment 648, 350-357.
[33] Feng J, Wei K, Chen Z, Lü XT, Tian JH, Wang C, and Chen LJ*, 2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry, Global Biogeochemical Cycles 33, 559-569.
[34] Wang C, Houlton BZ, Liu DW, Hou JF, Cheng WX, Bai E*, 2018a. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences 15, 987-995.
[35] Wang C, Liu DW, Bai E*, 2018b. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry 120, 126-133.
[36] Almaraz M*, #, Bai E #, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ, 2018a. Agriculture is a major source of NOx pollution in California. Science Advances 4, eaao3477.
[37] Almaraz M*, Bai E, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ, 2018b. Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NOx emissions. Science Advances 4, eaau7373.
[38] Feng J, Turner BL, Wei K, Tian JH, Chen Z, Lü XT, Wang C, Chen LJ*, 2018. Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands. Geoderma 327, 36-44.
[39] Wang C, Houlton BZ, Dai, WW, Bai E*, 2017a. Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Science of The Total Environment 574, 1044-1053.
[40] Wang C, Wei HW, Liu DW, Luo WT, Hou JF, Cheng WX, Han XG, Bai E*, 2017b. Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil 417, 43-52.
[41] Liu DW, Zhu WX, Wang XB, Pan YP, Wang C, Xi D, Bai E, Wang Y, Han XG, Fang YT*, 2017. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200 km transect. Biogeosciences 14, 989-1001.
[42] Luo WT, Li MH, Sardans J, Lu XT, Wang C, Penuelas J, Wang ZW, Han XG, Jiang Y*, 2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution 7, 6927-6934.
[43] Liu J, Wang C, Peng B, Xia ZW, Jiang P, Bai E*, 2017. Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components. Plant and Soil 412, 453-464.
[44] Wang C, Liu DW, Luo WT, Fang YT, Wang XB, Lü XT, Jiang Y, Han XG, Bai E*, 2016. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology 9, 576-585.
[45] Feng J, Turner BL, Lü XT, Chen Z, Wei K, Tian JH, Wang C, Luo WT, Chen LJ*, 2016. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemical Cycles 30, 1264-1275.
[46] Luo WT, Dijkstra FA, Bai E, Feng J, Lü XT, Wang C, Wu HH, Li MH, Han XG*, Jiang Y*, 2016. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry 127, 141-153.
[47] Wang XB, Van Nostrand JD, Deng Y, Lü XT, Wang C, Zhou JZ, Han XG*, 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS microbiology ecology 91, fiv133.
[48] Lü MK, Xie JS*, Wang C, Guo JF, Wang M, Liu X, Chen Y, Chen GS, Yang YS, 2015. Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biology and Fertility of Soils 51, 857-867.
[49] Luo WT, Elser JJ, Lü XT, Wang ZW, Bai E, Yan C, Wang C, Li MH, Zimmermann NE, Han XG, Xu ZW, Li H, Wu Y, Jiang Y*, 2015b. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles 29, 1298-1308.
[50] Wang C, Wang XB, Liu D, Wu HH, Lü XT, Fang YT, Cheng WX, Luo WT, Jiang P, Shi J, Yin H, Zhou JZ, Han XG*, Bai E*, 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications 5, 4799.
[51] 杨静怡,王旭,孙立飞,王超*,白娥. 氮磷添加对长白山温带森林土壤微生物群落组成和氨基糖的影响。应用生态学报,2020,31(6):1948-1956
[52] 范珍珍, 王鑫, 王超*, 白娥. 整合分析氮磷添加对土壤酶活性的影响. 应用生态学报. 2018, 29(4): 1266-1272.
[53] 候建峰, 吕晓涛, 王超, 王朋*.中国北方草地呼吸的空间变异及成因. 应用生态学报. 2014, 25(10):2840-2846.
[54] 王超, 黄蓉, 杨智杰*, 刘强, 陈光水等.万木林保护区柑橘和锥栗土壤呼吸的比较研究.应用生态学报, 2012, 32(6): 1469-1475;
[55] 王超, 黄群斌, 杨智杰*, 黄蓉. 陈光水等.杉木人工林不同深度土壤CO2通量初步研究. 生态学报, 2011,31(19): 5711-5719; 2011.10.08
[56] 王超, 杨智杰*, 陈光水,范跃新,刘强等. 万木林保护区毛竹林土壤呼吸特征及影响因素.应用生态学报, 2011, 22(5): 1212-1218; 2011.05.15
[57] 刘强,王超,杨智杰*,陈光水,黄锦学,黄蓉,田浩. 福建建瓯万木林柑橘与锥栗凋落物数量、组成及动态. 亚热带资源与环境学报. 2011, 6(4):29-34;
[58] 王超, 杨智杰*, 黄蓉, 刘强, 杨玉盛等. 中亚热带人工经济林土壤有机碳含量及分布. 亚热带资源与环境学报. 2011, 6(2):36-41;
[59] 黄蓉, 王超, 杨智杰*, 陈光水等.万木林青年和老龄常绿阔叶林乔木层碳贮量分配特征. 亚热带资源与环境学报. 2011, 6(2):29-35.
[60] 王超, 杨智杰*, 陈光水, 杨玉盛等. 土壤垂直剖面的CO2通量研究.亚热带资源与环境学报. 2010, 5(4): 85-92; 2010.12.15