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Abstract

Leaf mass per area (LMA) is a key leaf functional trait correlated with plant strategies

dictating morphology, physiology, and biochemistry. Although sunlight is generally

accepted as a dominant factor driving LMA, the contribution of each spectral region

of sunlight in shaping LMA is poorly understood. In the present study, we grew

11 widespread forb species in a common garden and dissected the traits underpin-

ning differences in LMA, such as its morphological components (leaf density [LD] and

leaf thickness [LT]), macroelement, and metabolite composition under five spectral-

attenuation treatments: (1) transmitting c. 95% of the whole solar spectrum

(> 280 nm), (2) attenuating ultraviolet-B radiation (UV-B), (3) attenuating both UV-A

and UV-B radiation, (4) attenuating UV radiation and blue light, (5) attenuating UV

radiation, blue, and green light. We found that LMA, LD, and chemical traits varied

significantly across species depending on spectral treatments. LMA was significantly

increased by UV-B radiation and green light, while LD was increased by UV-A but

decreased by blue light. LMA positively correlated with LD across treatments but was

only weakly related to LT, suggesting that LD was a better determinate of LMA for

this specific treatment. Regarding leaf elemental and metabolite composition, carbon,

nitrogen, and total phenolics were all positively correlated with LMA, whereas lignin,

non-structural carbohydrates, and soluble sugars had negative relationships with

LMA. These trends imply a tradeoff between biomass allocation to structural and

metabolically functional components. In conclusion, sunlight can spectrally drive LMA

mainly through modifying functional and structural support.
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1 | INTRODUCTION

Plant functional traits generally reflect trade-offs in plant acquisition/

investment according to the limiting resources in their environments

(Wright et al., 2004). Leaf mass per area (LMA), as the key trait to the

‘leaf economic spectrum (LES)’, is an indicator of leaf physiological

and morphological function (e.g., photosynthesis and defense)

(Poorter et al., 2009; Poorter et al., 2019; Reich et al., 1997), as well

as ecosystem properties and processes (e.g., primary productivity and

litter decomposability) (Adler et al., 2014; Cornwell et al., 2008;

Duursma & Falster, 2016; Wright et al., 2004). A better understanding

of the abiotic drivers (e.g., light) of variations in LMA, and the struc-

tural and compositional basis of LMA, is required to improve our

capacity to predict how ecosystem functioning responds to ongoing

climate changes (e.g., cloudiness, aerosol pollutants, and forest fires).

LMA is determined by two structural components, leaf thickness

(LT) and leaf density (LD, dry mass per unit volume): LMA = LT � LD

(Poorter et al., 2009; Witkowski & Lamont, 1991). Increases in LT are

primarily associated with additional mesophyll thickness (e.g., increase

in the layers and volumetric fraction of palisade cells) (Coble &

Cavaleri, 2017; Griffith et al., 2016; Niinemets, 1999). A higher LT can

contribute to higher photosynthetic capacity under high light (Oguchi

et al., 2005) or higher water use efficiency under drought conditions

(Wright et al., 2002). Variation in LD is generally related to changes in

mesophyll cell size, air spaces, and the volume fraction of the cell wall

(Niinemets, 1999; Poorter et al., 2009). Tightly packed mesophyll cells

with thickened cell walls would increase LD and constrain mesophyll

conductance, limiting photosynthesis and carbon (C) uptake (John

et al., 2017; Niinemets, 2001), but increase robustness against water

loss and herbivory (Peeters, 2002). On the other hand, leaf nutrients

or chemical compounds per unit leaf area are positively related to LD

and LMA (Poorter et al., 2009; Poorter & Villar, 1997). For instance,

LMA increases with a greater proportion of leaf C (de la Riva

et al., 2016) and total non-structural carbohydrates (NSC)

(Xu et al., 2012), and with low nitrogen (N) concentration (de la Riva

et al., 2018). Therefore, the extent to which LMA responds to envi-

ronmental changes strongly depends on its structural and functional

basis.

A large number of studies focusing on the plasticity of LMA to

abiotic factors have found that it responds to numerous changes in

environmental conditions in nature; the factors driving variation

in LMA include light (Coble & Cavaleri, 2015; Fajardo & Siefert, 2016),

temperature (Fajardo & Piper, 2011; Zhang et al., 2020), water

(Fernandez-Martinez et al., 2016; Sanchez-Gomez et al., 2013), nutri-

ents (Onoda et al., 2008; Wang et al., 2019), and CO2 (Hikosaka

et al., 2005; Ishizaki et al., 2003). However, a meta-analysis from

Poorter et al. (2009) has identified that light is the dominant factor

driving LMA variation, exceeding temperature in importance, based

on LMA data from a total of 3800 species across functional groups

and ecosystems types. The positive correlation across species

between irradiance and LMA suggests that plants may have strategi-

cally adapted to changes in light conditions to increase leaf area for

light interception under low light and photosynthetic capacity under

high light. Poorter et al. (2019) further generalized irradiance–

response curves for 70 traits related to leaf morphology, chemistry,

and physiology of 760 species: Plasticity in both LT and LD tended to

double over the studied light range (0.2–75 mol m�2 d�1), equally

contributing to the 2.6-fold increase in LMA from low to high irradi-

ance. Although previous meta-analyses provide a general picture of

the response to light intensity (quantity), the related mechanisms

behind these responses, particularly the extent to which such changes

are determined by spectral composition, are less well described.

Sunlight does not only supply the essential energy input for

photosynthesis (Hikosaka et al., 1994; Moss, 1967; Oguchi

et al., 2017), but importantly provides cues that regulate leaf traits

and dictate plant functional strategy (Ballaré, 2014; Jenkins

et al., 2001; Wang et al., 2020). The incident solar radiation is com-

posed of multiple spectral regions, which are important for plant

function, from ultraviolet (UV)-B (280–315 nm) to red light (600–

700 nm). Photoreceptors absorb specific spectral regions and are

well documented to regulate a set of molecular, physiological, and

biochemical processes (Casal & Qüesta, 2018; Robson et al., 2019;

Smith et al., 2017; Verdaguer et al., 2017). Briefly, UV-B radiation

(280–315 nm) and UV-A radiation below 350 nm sensed by UVR8

(UV RESISTANCE LOCUS8) can induce the synthesis of UV-

absorbing compounds (e.g., phenolics) to attenuate excess UV-B

radiation (Casati et al., 2011; Rai et al., 2019). Blue light (400–

500 nm) increases LMA and leaf N concentration, and promotes

photosynthetic efficiency (Hogewoning et al., 2010) through activat-

ing photoreceptors, cryptochromes (CRYs), phototropins (PHOTs),

and proteins from the zeitlupe family (Casal, 2000; Lin, 2000). Red

light (600–700 nm) decreases LMA, LT, N, and NSC concentrations

(Hu et al., 2016; Liu et al., 2018) by activating phytochromes (PHYs)

(Smith, 2000). Green light (500–600 nm) induces shading syndromes

antagonistically to blue light (Smith et al., 2017). However, even

though the roles of each spectral region have been explored in

molecular biology and actively applied in horticulture (Brelsford

et al., 2019; Hogewoning et al., 2010; O'Hara et al., 2019; Rai

et al., 2019), the ecophysiology behind how these regions of sunlight

interact to affect plant functional traits outdoors has not been

entirely resolved, since multiple wavebands may coordinate leaf

responses simultaneously through crosstalk among photoreceptors

(Casal, 2000; Rai et al., 2019).

Although several ecological studies have focused on responses to

changing UV-B radiation and red to far-red ratio (R/Fr) to respectively

assess how plants acclimate to UV-B stress (Rousseaux et al., 2004;

Searles et al., 2001) and shade (Aphalo & Lehto, 2001; Razzak

et al., 2017), spectral regions from the photosynthetically active radia-

tion (PAR) are not often included in such studies. In the present study,

we assessed variation in LMA and components (both morphological

and chemical) of 11 common forb species growing under spectral-

attenuation-filter treatments. We aimed to answer the questions:

(1) Which spectral regions determine LMA? (2) How does variation in

LD and LT explain changes in LMA? (3) Is the change in LMA with

spectral composition related to differences in leaf metabolic, struc-

ture, and elemental composition?
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2 | MATERIALS AND METHODS

2.1 | Plant materials

The present study used 11 widespread light-demanding forb species

(see species list in Table 1). Most species are sun plants, but some

favors shade conditions. Seeds were collected from Tsukuba Botanical

Garden, National Museum of Nature and Science, Tsukuba, Japan

(36�000N, 140�080E). Seeds were sown on 25th May 2018 into pots

with a volume of 438 cm3 (9.0 � 7.6 � 6.4 cm) in a greenhouse of the

Forestry and Forest Products Research Institute (FFPRI), Tsukuba,

after vernalization on wet filter papers for 4 days at 4�C in the dark.

The order of sowing seeds was opposite to the germination order,

and the timing was controlled to ensure the initial age of seedlings

was relatively homogenous across species. Pots were filled with a

mixture of compost, including vermiculite, kanuma soil, and pumice

[6:1:2:1(v/v)]. We watered pots from beneath through the trays every

3 days and supplied nutrients once per week with a commercial liquid

fertilizer (N–P–K = 6–10–5%, HYPONEX, Japan). The nutrient dose

was diluted to a concentration of 1.2 ml/L, 7.5 ml/pot. Dead individ-

uals during the experimental period were removed.

2.2 | Experimental growth conditions

We carried out this spectral-attenuation experiment in a large

unshaded garden at FFPRI. Details are described in a previous study

(Wang et al., 2020). Briefly, we attached the plastic filters to

1.2 � 1.0 m wooden frames at around 20� inclination (facing south),

with additional filter pieces on both the East and West sides of

frames, in order to attenuate diffuse sunlight early and late in the day.

Five spectral irradiance treatments included: (1) Full-spectrum treat-

ment (transmitting λ >280 nm, i.e., all solar UV-B), with a fully trans-

parent polythene film (0.05 mm thick, 3904CF; Okura), transmitting

approximately 95% of the whole solar spectrum; (2) No-UVB treat-

ment (λ >315 nm), attenuating UV-B radiation (0.125-mm-thick poly-

ester film, Autostat CT5; Thermoplast); (3) No UV treatment (λ

>400 nm), attenuating all UV radiation (0.2-mm-thick Rosco E-Color

226 filter, Westlighting); (4) No UV/Blue treatment (λ >500 nm),

attenuating all UV and blue wavelengths (0.20-mm-thick Roscolux

Supergel 312 filter); (5) No-UV and blue–green (UV/BG) treatment (λ

>580 nm), attenuating all UV radiation and BG wavelengths (0.2-mm-

thick Rosco E-Color 135 Deep Golden Amber filter) (Table 2).

Due to differences in transmittance ratios among filters, we

added different types of spectrally neutral shade mesh below the fil-

ters, allowing seedlings to receive equivalent PAR irradiance across

treatments. The average PAR under each frame was 14% of ambient

sunlight (Table 2), determined by a quantum sensor (LI-190, Li-Cor

Biosciences Inc). Attenuating solar radiation to create treatments at

equivalent PAR irradiance allowed us to better distinguish spectral

treatment effects rather than damage from high irradiance. The spec-

trum treatment created by each filter was determined under a clear

sky at solar noon using a spectroradiometer (USR- 45DA; USHIO).

The spectral irradiance under each frame during the experiment was

checked using a Maya 2000 Pro array spectrometer (Ocean Optics

Inc.) calibrated for maximum spectral sensitivity in solar UV and PAR

(Hartikainen et al., 2018).

The whole experiment was arranged in four randomized blocks of

filters (in total 20 filter-frames), each block being a replicate

(Figure S1). Twenty individuals of each species were randomly sepa-

rated among the 20 filter-frames on June 23, 2018. Plants were

placed in two plastic trays (51 � 31 � 5.3 cm) on a wooden shelf

under the center of each frame to limit the diffuse solar radiation from

outside. We changed filter height to keep them suspended around

20-cm above the upper leaves, and randomly rotated the position of

the pots every week to ensure all seedlings grew in similar light condi-

tions throughout the experiment. We supplied water twice a day

(once at 8:00 a.m. and 7:00 p.m. for 60 s) using a purpose-built sprin-

kler system. Nutrients were supplied in the same way described

above. Ambient PAR, UV-B, and UV-A radiation (Figure S2A,B) were

measured and integrated over 15-min intervals using the LI-190SA

sensor and two broadband UV-cosine sensors (UV-B and UV-A; sglux

GmbH), respectively, with a data-logger (LI-1400; LI-COR). Air tem-

perature approximately 20 cm above the pots (Figure S2C) was

recorded at 30-min intervals using a HOBO H8 Pro temperature log-

ger (Onset Computer Corporation, Bourne).

2.3 | Measurements of leaf traits

Fully expanded sun leaves (2–4 leaves per individual) were collected

for chemical analysis under a clear-sky sunny day (August 27, 2018) at

the end of the growing season. Leaf samples were ground into a fine

powder after vacuum-drying (FDU–1200, EYELA) for 16 h. Leaf C and

N concentrations were measured using an elemental analyzer (Vario

MAX cube). The concentration of total phenolics was determined by

the Folin–Ciocalteu method using tannic acid as a standard sample

(Waterman & Mole, 1994). The concentration of lignin was measured

by an improved acetyl-bromide procedure (Iiyama & Wallis, 1990) and

calculated from the fitted calibration curve (Fukushima &

Hatfield, 2001). The concentration of the condensed tannins was

determined by a proanthocyanidin assay using cyanidin chloride as a

standard sample (Julkunen-Tiitto, 1985). The concentrations of total

soluble sugars and starch were determined using the anthrone

method (Wang, Qi, et al., 2018). We defined NSC as the sum of total

soluble sugars and starch. All chemical traits were expressed on a dry-

matter basis (% dm) and an area basis (g m�2).

Another equivalent pair of leaves were collected for measuring

leaf morphological traits on August 28, 2018. Leaf area (LA, cm2) was

scanned and calculated with the Fiji software (Wang et al., 2020). LT

(μm) was measured in four random places with a thickness gauge

(model 547-401 m, 0.001 mm; Mitutoyo), avoiding both primary and

secondary veins. The measured leaves were dried in an oven at 60�C

for 48 h to obtain leaf dry mass (LM, g). LMA (g m�2) was determined

based on LA and LM of scanned leaves. LD (g cm�3) was calculated

from LM divided by LT and LA. Sampling was not done for two dead
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species (Adenophora triphylla var. japonica and Prunella vulgaris L.) in

the No-UVB treatment, and one in No-UV/BG treatment (P. vulgaris

L.) during the experiment.

2.4 | Statistical analyses

Linear mixed effect models (LME) were fitted for each leaf trait with

spectral treatment as the fixed factor, and species and blocks as ran-

dom factors, which reduced the effects of plant size and frame posi-

tion, using the nlme package (Pinheiro & Bates, 2000). When the

treatment was significant (p < 0.05), further analysis assessed

the effects of specific wavelength regions by pairwise contrasts (func-

tion glht, R package multcomp, Hothorn et al., 2008). The contrasts

between the spectral treatments: >315 nm versus >280 nm, >400 nm

versus >315 nm, >500 nm versus >400 nm, >580 nm versus

>500 nm, estimate the effect of UV-B, UV-A, blue light, and green

light, respectively. Benjamini-Hochberg (BH)'s method (Benjamini &

Hochberg, 1995) was used to correct p-values for multiple compari-

sons. Linear least squares method was used to analyze the correla-

tions among leaf morphological and chemical traits. Extra sum-of-

squares F test was used to test whether slopes and intercepts were

significantly different. The Box–Cox transformation was applied

where appropriate to ensure the normality of response variables

(Yeo & Johnson, 2000). In addition, the present experiment pre-

included three shade-tolerant species. However, we found that the

robustness of the relationships between LMA and functional traits

was very weak for shade-tolerant species. Finally, we removed this

data and use those of shade-intolerant species only.

3 | RESULTS

3.1 | Spectral-attenuation treatments lead to
variation in leaf traits

In the experiment, we firstly measured the 13 leaf traits covering a

wide range of variation across the 11 studied species (Table 1) and

observed differences of between 1.2 and 9.6 times among species.

Across all species in general, LMA and LD were significantly affected

by our solar spectral-attenuation treatments (Figure 1; Figures S3 and

S4), despite receiving equivalent PAR and temperature (Figure S2).

Contrast comparisons found that LMA was significantly reduced by

the attenuation of UV-B radiation (by 6.7%) and green light (by 5.9%)

(Figure 1A), whereas LD significantly decreased and increased when

either UV-A radiation and blue light were attenuated, respectively

(Figure 1B).

In terms of chemical traits on a dry-mass basis, concentrations

of C, N, and total phenolics were significantly reduced by the attenua-

tion of blue light (Figure S4A–C), while concentrations of C and total

phenolics also decreased when green light and UV-B radiation were

attenuated, respectively. Lignin concentration was significantly

increased by the attenuation of UV-B radiation (Figure S4D).T
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Concentrations of tannins, NSCs, and total soluble sugars were signifi-

cantly reduced by the attenuation of green light (Figure S4E–G),

whereas total soluble sugars also increased when UV-B radiation was

attenuated. Starch concentration significantly decreased with the

attenuation of UV-A radiation (Figure S4H). These traits on an area

basis tended to decrease consistently from Full-spectrum to No-UV/

BG treatment; concentrations of most macroelements and metabo-

lites (all except for NSC and starch) were significantly reduced by the

attenuation of green light (Figure S5).

3.2 | Relationships between leaf traits among
spectral-attenuation treatments

LMA was positively correlated with LD across spectral treatments with

similar slopes (R2 = 0.48–0.62, p < 0.05, Table S1, Figure 2A), but not

with LT; except for one negative relationship from the No-UV treat-

ment (R2 = �0.48, p = 0.02, Figure 2B). There were no significant rela-

tionships between either of the two components (LD and LT) of LMA,

irrespective of spectral treatment (Figure 2C).

LMA was positively correlated with the concentrations of C, N,

and total phenolics on a dry-mass basis (R2 = 0.09–0.31, p < 0.05,

Table S1, Figure 3A), but negatively correlated with the concentra-

tions of lignin, NSCs, and total soluble sugars (R2 = �0.20��0.14,

p < 0.05) across all treatments. Regarding each spectral treatment,

LMA was positively related with C concentration in the Full-spectrum,

No-UVB, and No-UV/BG treatments (R2 = 0.46–0.66, p < 0.05), and

with N concentration in the Full-spectrum, No-UV/Blue, and No-UV/

BG treatments (R2 = 0.36–0.69, p < 0.05).

As a whole, LD was also positively correlated with the concentra-

tion of total phenolics (R2 = 0.08, p = 0.04, Table S1, Figure 3B), and

negatively with concentrations of lignin, NSCs, and total soluble

sugars (R2 = �0.09–-0.29, p < 0.05). Significant relationships of LD

with NSCs and total soluble sugars at the treatment level were

detected in the No-UVB and No-UV/BG treatments. However, there

were no relationships of LD with C or N concentration (p > 0.05).

LT was negatively correlated with the concentrations of C, N, and

tannin (R2 = �0.30–-0.10, p < 0.05, Table S1, Figure 3C) across all

treatments. Specifically, LT had negative relationships with N concen-

tration in the Full-spectrum, No-UVB, and No-UV treatments

(R2 = �0.53–-0.36, p < 0.05), and with tannins in the Full-spectrum

and No-UVB treatments (R2 = �0.53–-0.41, p < 0.05).

These relationships in each treatment were weak on an area basis

(except for those with total soluble sugars, Table S2), whereas LMA and

LT were generally positively correlated with C and N for the pooled

data, and negatively with other metabolites and structural traits.

4 | DISCUSSION

4.1 | Solar spectral regions determining LMA and
its components

We found that LMA significantly decreased when UV-B radiation was

attenuated (Figure 1A). Such a UV-B effect is congruent with most

previous findings of irradiance dose–response studies because high

global irradiance almost always coincided with high UV-B irradiance in

the field. For instance, LMA is generally higher across scales of leaves

and species that grow in “high light” environments, that is, higher in

shade-intolerant than shade-tolerant herb and woody species

(Niinemets, 1997; Zhang et al., 2019), and for leaves at the canopy top

than those within the canopy (Coble & Cavaleri, 2014, 2015). High

UV-B irradiance not only promotes the accumulation of specific pheno-

lic compounds in epidermal tissues (also see Figure S4C) that act as

F IGURE 1 Variation in (A) leaf mass per area (LMA), (B) leaf
density (LD), and (C) leaf thickness (LT) under different spectral
irradiance treatments. Each point represents the mean ± 1 SE trait
value of the individuals of each treatment; n = 9–11 replicates (one
replicate being one plant with 1 measure per plant). Data were
analyzed using linear mixed effect models (LME), including treatments
as fixed factors, and species and blocks as random factors. Treatment
effect is shown by χ2 and p values. The specific effect of each spectral
region is given by contrast comparison between pairs of treatments.
*Statistically significant difference (p < 0.05) and ns represents no
significant difference (p > 0.05), tested by Benjamini-Hochberg (BH)'s
method
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UV-absorbing sunscreens (Åke et al., 1994), but also increases LMA to

improve UV tolerance, that is, through denser and more compact leaves

(Berli et al., 2012). Recent mechanistic studies have revealed that these

UV-B responses are regulated by photomorphogenesis mediated by

UVR8 (Hayes et al., 2014; Jenkins, 2017; Rizzini et al., 2011). However,

a meta-analysis study has not detected a consistent response of LMA

to high UV-B irradiance across species of different functional groups

and ecosystem types (Poorter et al., 2009), probably due to insufficient

data from controlled experiments rather than field monitoring, or maybe

because so many ubiquitous environmental drivers (e.g., temperature

and moisture) interact strongly with sunlight to shape LMA (Wang, Liu,

et al., 2018).

Interestingly, in addition to indicators of “high light” like UV-B

radiation, green light also significantly increased LMA in our experi-

ment from the comparison between No-UV/Blue and No-UV/BG

treatments (Figure 1A). Molecular and horticulture studies find that

green light generally causes two distinct photomorphogenic effects. It

can act as a ‘shade’ cue antagonistically to blue light, promoting a

F IGURE 2 Relationship between (A) leaf mass per area (LMA) with leaf density (LD), (B) LMA with leaf thickness (LT), and between (C) LT
with LD across species for each spectral treatment. LMA and LD values were transformed by the box–cox power transformation. Solid colored
lines denote significant relationships (p < 0.05), tested by linear least squares method. R2 values of the significant relationships were shown next
to the respective legend markers. Detailed statistical analyses coefficient and p values are in Table S1

F IGURE 3 Relationship between (A) leaf mass per area (LMA), (B) leaf density (LD), and (C) LMA with leaf chemical concentrations across
species for each spectral treatment. Values of LMA, LD, phenolics, tannins, sugars, starch, and non-structure carbohydrates (NSC) were
transformed by the box–cox power transformation. Solid colored lines denote significant relationships (p < 0.05), tested by linear least squares
method. Detailed coefficient and P values are in Table S1. C, carbon; N, nitrogen
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more shade-acclimated phenotype (Smith et al., 2017; Zhang

et al., 2011). Green light can penetrate deeper into the mesophyll

layer than blue and red light (Terashima et al., 2009) and contributes a

significant proportion of photosynthetic C assimilation in deeper leaf

tissues (Smith et al., 2017). This latter mechanism may explain the

change in LMA under green light found in our study, which requires

clarification through further specific studies.

Regarding the components of LMA, LD rather than LT signifi-

cantly responded to our spectral treatments, each of which decreased

and increased with the attenuation of UV-A and blue light, respec-

tively (Figure 1B,C). This trend implies that mass allocation or invest-

ment within the leaf is more plastic than leaf structure to the changes

in spectral composition. Higher LD may reflect smaller cells with

thicker cell walls (Garnier & Laurent, 1994), lower volume of airspaces

(Coble & Cavaleri, 2017), and a higher proportion of sclerified tissues

(Niinemets, 2001). Such “sun-leaf type” characteristics may be medi-

ated by UV-A radiation (Verdaguer et al., 2017), which is perceived by

UVR8 (Casati et al., 2011; Rai et al., 2019) and CRYs (Casal, 2013).

Both photoreceptors can regulate light acclimation, for example,

through an increase in palisade cells and photoprotective pigments.

However, it is not clear why blue light rather reduced LD in our

experiment (Figure 1B). One possible interpretation is that blue light

generally stimulates an increase in stomatal conductance

(Hogewoning et al., 2010; Terfa et al., 2013), which may also result in

a high proportion of leaf internal air space, consequently contributing

to a low LD.

4.2 | Variation in LD explains changes in LMA in
response to spectral composition

LMA positively correlated with LD across all spectral treatments

(Figure 2A), whereas it negatively correlated with LT only in the treat-

ment where UV radiation was attenuated (Figure 2B). These results

suggest that the dependency of LMA on LD is consistent across multi-

ple spectral compositions and inherent among our studied species.

This conclusion agrees with previous findings, for example, that LD is

a better driver of LMA than LT among 769 native herbs in the field

(Wilson et al., 1999) and 14 grasses in the growth room (Garnier &

Laurent, 1994). However, all three metrics (LMA, LD, and LT) signifi-

cantly increase with the rise in solar irradiance from the understorey

to canopy top to the forest canopy (Coble & Cavaleri, 2014, 2015;

Zhang et al., 2019). These patterns imply that the dependency of LMA

on LD may be determined by spectral composition (light quality), but

that the strength of irradiance (light intensity) mediates how both LD

and LT affect LMA.

This dissociation between the effects of the sunlight intensity

and its composition is permitted by the independent relationship

between LD and LT (Figure 2C). Earlier studies have also found LD

and LT to respond independently to environmental conditions

(Kitajima & Poorter, 2010; Niinemets, 1999), with LT generally greater

under stress conditions, such as high light, drought, and low tempera-

ture (Poorter et al., 2009; Poorter et al., 2019). Higher LT implies that

a greater fraction of leaf tissues is allocated to the mesophyll (Sancho-

Knapik et al., 2020), especially in palisade layer, which maximizes

overall absorption (Coble & Cavaleri, 2017). Thus, increased LT

together with higher LD under strong irradiance would contribute to

greater net C assimilation rate and shorten the “leaf pay-back time”
(Niinemets, 2001; Poorter et al., 2019). Under the low irradiance,

however, high LMA and LD may be advantageous at the expense of

short-term C gain (Kitajima, 1994; Valladares & Niinemets, 2008),

since increased LD is associated with a decrease in assimilative com-

pounds and modifications in leaf anatomy (Niinemets, 1999).

4.3 | The relationship between leaf morphology
and leaf chemical compositions

Based on relationships of LD and LT with leaf chemical compositions,

we could understand the allocation strategy in structural components

and metabolically functional components when plants receive differ-

ent spectral compositions. LMA and leaf chemical composition covar-

ied according to the spectral composition of growing conditions

(Table S1). LMA was positively correlated with C and N concentration

across multiple spectral treatments (Figure 3A), confirming that higher

LMA is related to a higher fraction of C in structural tissues (de la Riva

et al., 2018) and of N in physiological functioning. Such results seem

not support the trade-off in investment between mechanical support

and physiological activity, according to the leaf economics spectrum

theory (Wright et al., 2004). This expectation is based on the hypothe-

sis that higher C and N allocation to cell walls results in higher

mechanical resistance, while the decrease in N to photosynthetic pro-

teins reduces photosynthesis (Onoda et al., 2017). However, the cell

wall represents only one aspect of leaf mechanical properties, which

also include, for example, cuticle, fibers, and veins (Onoda

et al., 2011), while the fraction of N allocated to the cell wall and pro-

teins also varies among species (Onoda et al., 2017). In other words, it

is not a given that a higher cell wall fraction leads to less N allocated

to photosynthetic apparatus. This possibility is supported by a study

that found leaf mechanical strength to vary independently from pho-

tosynthetic capacity across 57 shade-tolerant and light-demanding

species (He et al., 2019).

As a whole, LMA and LD were negatively correlated with mass-

based concentrations of lignin, NSCs, and sugars (Figure 3A,B). This

relationship indicates a trade-off between LMA and metabolite accu-

mulation per leaf mass, which may be the result of greater mass allo-

cation to structural components than metabolically functional

components (those contribute to improve stress tolerance) with a high

LMA (Li et al., 2013). Notably, LMA and LD were positively correlated

with mass-based concentrations of total phenolics (Figure 3A,B), the

dominant compounds of stress tolerance. Phenolics are C-rich com-

pounds (ca. 30% C on a mass basis) compared with proteins

(Poorter, 1994), and their accumulation in leaf vacuoles and cell walls

can increase LD (Witkowski & Lamont, 1991). In addition, these

dependencies of LMA on metabolite composition were less differenti-

ated among spectral treatments (Figure 3A, Table S1), perhaps due to

WANG ET AL. 705
Physiologia Plantarum



the overlapping action spectra of photoreceptors. It is known that the

synthesis of specialized (secondary) metabolites is generally mediated

by multiple wavelength regions (Casal, 2013; Casal & Qüesta, 2018;

Robson et al., 2015; Smith et al., 2017; Verdaguer et al., 2017). Their

combined effects would be synergistic, additive, or antagonistic when

plants simultaneously receive light from multiple regions (Rai

et al., 2019; Wang et al., 2020). Nevertheless, the relationships dis-

cussed above need to be confirmed in more species, since the present

experiment just used 11 species, which may limit the robustness.

5 | CONCLUSIONS

The present study demonstrates that LMA and its morphological com-

ponents, and leaf elemental and metabolite compositions varied sig-

nificantly in response to solar spectral composition across 11 forb

species in spectral attenuation treatments receiving the same PAR

irradiance. LMA variation was determined by UV-B radiation and

green light, and in general was mainly dependent on LD rather than

LT. Changes in leaf elemental and metabolic composition, on the

mass-basis, under our spectral attenuation treatments were associ-

ated with changes in LMA, which implies a trade-off in biomass alloca-

tion between structural and metabolically functional components.

These results suggest that the spectral composition of solar radiation

can regulate LMA irrespective of total irradiance by modifying mass

investment and structural support.
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