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Abstract
Pine wood nematode, Bursaphelenchus xylophilus, as one of the greatest threats to pine trees, is spreading all over the 
world. Plant microorganisms play an important role in the pathogenesis of nematodes. The phyllosphere and rhizosphere 
bacterial and fungal communities associated with healthy Pinus koraiensis (PKa) and P. koraiensis infected by B. xylophilus 
at the early (PKb) and last (PKc) stages were analyzed. Our results demonstrated that pine wood nematode (PWD) could 
increase the phyllosphere bacterial Pielou_e, Shannon, and Simpson index; phyllosphere fungal Chao 1 index, as well as 
rhizosphere bacterial Pielou_e, Shannon, and Simpson index; and rhizosphere fungal Pielou_e, Shannon, and Simpson 
index. What’s more, slight shifts of the microbial diversity were observed at the early stage of infection, and the microbial 
diversity increased significantly as the symptoms of infection worsened. With the infection of B. xylophilus in P. koraien-
sis, Bradyrhizobium (rhizosphere bacteria), Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyllosphere fungi) 
were the major contributors to the differences in community compositions among different treatments. With the infection of 
PWD, most of the bacterial groups tended to be co-excluding rather than co-occurring. These changes would correlate with 
microbial ability to suppress plant pathogen, enhancing the understanding of disease development and providing guidelines 
to pave the way for its possible management.
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Introduction

Terrestrial ecosystems are confronted with more and more 
abiotic and bio-disturbances with the acceleration of global 
climate change. And extreme climate change aggravates the 
emergence of plant diseases and insect pests in global for-
est systems, which has brought great ecological and eco-
nomic challenges [29]. In the forest ecosystem, the loss of 
leaves caused by diseases and pests leads to tree dieback 
and large-scale forest decline, resulting in changes of forest 

community structure [56], which in turn affects microbial 
communities [9] and ecosystem function [60]. Plant adap-
tation to the environment is the result of the integration of 
the plant itself and its microbiome, which is essential for 
maintaining the function of terrestrial ecosystems [12, 15, 
51, 80]. Over the years, pine trees have been confronted with 
a severe and devastating disease, pine wilt disease (PWD) 
mainly caused by Bursaphelenchus xylophilus [33], namely 
the pine wood nematode, which is one of the most serious 
conifer diseases worldwide, threatening several species of 
pine trees [78], and resulting in profound economic losses 
and adverse ecological environmental threat worldwide [67, 
78, 85, 95].

Trees infected with PWD have symptoms such as xylem 
deformation, resin duct disruption, and cortex and cam-
bium tissue damage, which affect water transportation and 
conduction [26], resulting in the decline in photosynthe-
sis, and ultimately leading to discoloration, wilting, and 
consequent death of host trees [27]. Given that, the bio-
logical characteristics of PWD [50, 101], the dispersing 
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vector [13, 42, 83], and the mechanism of PWD patho-
genicity [63, 103] have become research hot spots. In 
addition, there is growing evidence suggesting that during 
pathogenesis of B. xylophilus, plant microorganisms play 
important roles in host fitness [31, 34, 74, 81, 84]. The 
growing amount of data demonstrated that plant-related 
bacteria have beneficial effects, promote plant growth, 
and improve plant stress and disease resistance [36, 68], 
particularly bacterial genera Trichoderma, Serratia, Bacil-
lus, and Esteya which have nematicidal activity through 
mechanisms of parasitism or their production of toxic 
compounds [53, 89]. In this perspective, there is a press-
ing need to illuminate the variations of plant microbiome 
during the disease development [61], advancing our under-
standing of the relationship between plant compartments 
and the microbial communities after B. xylophilus infec-
tion, and paving the way for its possible management.

In recent years, the endophytic microbial community of 
several B. xylophilus host pine trees, such as Pinus flexi-
lis [11], Pinus contorta [7], Pinus pinaster (Proença et al., 
2017a), and Pinus sylvestris [38], has been well documented. 
It is well established that pine endophytic bacterial diversity 
and composition play an important role in regulating plant 
response to PWN [3, 54, 61]. However, our understanding of 
the significant implications of phyllosphere and rhizosphere 
microorganisms remains limited. To the best of our knowl-
edge, phyllosphere and rhizosphere microorganisms are two 
important components of plant microflora [39]. Previous 
studies have shown that the decline in plant healthy status 
or changes in growth conditions caused by host pathogens 
could affect the microbial community in leaves and roots of 
the host [23, 76, 85]. The phyllosphere microbiome interacts 
with the host plant affecting its health and function, and act 
as mutualists promoting plant growth and tolerance of envi-
ronmental stressors [72]. The plant healthy status also can 
affect the exudates of the plant root, which is the essential 
factor affecting the rhizosphere microbial community [37, 
96]. The rhizosphere microbial community has an excel-
lent ability to synthesize diverse secondary metabolites in 
response to different abiotic and biotic stresses, which is 
fundamental to the healthy growth of plants [6, 54]. In 
addition, microorganisms also form a complex and diverse 
co-occurring network through direct or indirect interac-
tions, and under the action of interspecies relationships 
such as symbiosis and competition, they produce positive 
and negative directions between each other, which are 
closely related to plant resistance [47]. In addition, previ-
ous researches collected the samples were only at one time 
point at the last stage of the disease [52]. Therefore, it is 
necessary to further investigate the microbial community 
at different stages of PWD after PWD occurrence and elu-
cidate the relationship between the plant pathogen and host 
microbial community.

P. koraiensis is widely distributed in Northeast China 
(Liaoning, Jilin, and Heilongjiang provinces), Japan, North 
Korea, South Korea, Russia, and other countries, with a total 
area of about 300,000 km2 [59]. P. koraiensis, as a famous 
and valuable economic tree species, plays a momentous 
ecological environmental value. However, in P. koraiensis, 
a main host of B. xylophilus that is generally distributed in 
China, the plant microbiome information after PWD infec-
tion under field conditions has been scarcely studied. Here, 
the phyllosphere and rhizosphere bacterial and fungal com-
munities in healthy P. koraiensis (PKa) and P. koraiensis 
naturally infected by B. xylophilus at the early stage (PKb) 
and at the last stage (PKc) of the disease were analyzed by 
sequencing 16S rDNA and ITS (internal transcribed spacer) 
rDNA using the high-throughput Illumina NovaSeq PE250 
to uncover the differences in host microbial community 
potentially caused by PWD. In this study, we hypothesized 
that [2] PWD could increase the diversity of phyllosphere 
and rhizosphere microbial communities that differed as the 
infection of B. xylophilus progressed; [3] the host bacterial 
and fungal community differed as the infection of B. xylophi-
lus progressed; and [4] with the infection of PWD, most of 
the microbial taxa tended to be co-excluding; besides, some 
microbial species unsuited towards living in infected pines 
disappeared and some species would present. This present 
study clarified the shifts of the host microbial community of 
P. koraiensis caused by PWD for the first time, so as to bet-
ter understand the relationships between pathogens and the 
host microbial community at different stages of PWD after 
the occurrence of PWD. What’s more, microbial community 
composition and microbial network can be used as biological 
indicators at different stages after the occurrence of PWD.

Materials and Methods

Overview of the Research Area

The study area is located at Dengta City, Liaoyang City, 
Liaoning Province, China (41°17′44″ N, 123°35′47″ E). 
The climate in this area is characterized as north temperate 
continental climate with an annual average temperature of 
8.8 °C, annual average precipitation of 600 to 800 mm, and 
an annual average frost-free period of 140 to 160 days. The 
soil type is classified as Eutrochrepts soil [71]. Five fixed 
sites with the same site conditions and soil basic properties 
were selected, with an area of 1 ha. Eight healthy P. koraien-
sis trees (PKa), eight diseased P. koraiensis trees infected 
by B. xylophilus at the early stage (PKb), and eight diseased 
P. koraiensis trees at the last stage (PKc) were selected for 
sampling in each site. The distance between diseased and 
adjacent healthy trees was less than 15 m. The selection 
of healthy and P. koraiensis trees infected by B. xylophilus 
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was made in accordance with the method described by Mill-
berg et al. [57], in which the healthy trees were completely 
green needles and from which no B. xylophilus was isolated. 
The early stage of infection tree refers to needles that have 
become slightly wilted and browning of needles. The last 
stage of diseased trees was completely dead looking with 
brown needles (Fig. S1).

Sample Collection

For the leaf sampling, 24 needle samples were collected 
from the tops of the branches from three directions (120° 
as the boundary) from 8 trees, and mixed as one replicate 
at each site. A total of 15 leaf samples (3 types × 5 repli-
cates) were collected from the study area. With regard to 
soil sampling, 24 rhizosphere soils were collected from three 
directions from 8 trees, and pooled together as one replica-
tion in each site, resulting in a total of 15 rhizosphere soil 
samples (3 types × 5 replicates). All the samples were put in 
the icebox and transported to the laboratory for subsequent 
analysis.

To analyze the microbial community on the leaves 
according to Kembel and Mueller [43], and Ren et al. [65], 
10 g of leaf samples from each replicate was cut into pieces 
and transferred to a sterile triangle flask. 1:20 (leaf weight/
volume TE buffer =1:20) phosphate-buffered saline solution 
(20 ml, PBS, 0.01 M, pH 7.4) was added to each triangle 
flask. After sealed with a sterilized film, the samples were 
shaken on a shaker at 200 r/min for 30 min at room tempera-
ture, and the microbial cells were separated from the leaf 
surface. Vacuum filtration was used in a sterile environment, 
and microbes from the oscillating liquid were collected on 
a 0.22-μm microporous membrane placed into 2-ml sterile 
centrifuge tubes, then stored at −80 °C prior to DNA extrac-
tion. Fresh soil removed plant residues and stone was passed 
through a 2-mm sieve and immediately put into 2-ml sterile 
centrifuge tubes and frozen at −80 °C for later DNA extrac-
tion and high-throughput sequencing.

DNA Extraction, Amplification, and NovaSeq PE250 
Sequencing

Genomic DNA was extracted from microporous membranes 
and 0.5 g soil using the FastDNA SPIN Kit for soil (MP 
Biomedicals, Santa Ana, CA, USA), in accordance with 
the manufacturer’s instructions. The concentrations of 
DNA were measured using a NanoDrop ND-1000 spectro-
photometer (Thermo Fisher Scientific, USA). The V3-V4 
regions of the bacterial 16S rDNA gene were amplified and 
sequenced using the primer pairs 338F (5′-ACT​CCT​ACG​
GGA​GGC​AGC​AG-3′) and 806R (5′-GGA​CTA​CHVGGG​
TWT​CTAAT-3′) with barcode sequence. And ITS1 regions 
of the fungal ITS rDNA gene were amplified using the 

primer pairs ITS1F (5′-CTT​GGT​CAT​TTA​GAG​GAA​GTAA-
3′) and ITS2 (5′-GCT​GCG​TTC​TTC​ATC​GAT​GC-3′) with 
barcode sequence [20]. All the PCR were carried out with 
25-μl mixture, including 2 μl of dNTPs (2.5 mM); 2 μl 
DNA template (40–50 ng); 0.25 μl (5 U/μl) of Q5 High-
Fidelity DNA Polymerase; 8.75 μl of ddH2O; 5 μl of Q5 
High-Fidelity GC buffer (5×) and Q5 reaction buffer (5×), 
respectively, 1 μl (10 uM) of forward primer; and 1 μl (10 
uM) of reverse primer. The following PCR thermal cycling 
conditions consisted of an initial denaturation step for 5 min 
at 98 °C, followed by 25 cycles of denaturation for 15 s at 
98 °C, annealing for 30 s at 55 °C, and elongation of 72 °C 
for 30 s, with the final elongation step for 5 min at 72 °C. 
The PCR amplicons were further purified and quantified by 
using Agencourt AMPure Beads (Beckman Coulter, Indi-
anapolis, IN) and PicoGreen dsDNA Assay Kit (Invitrogen, 
Carlsbad, CA, USA). PCR products for sequencing were 
carried out using an Illumina’s NovaSeq PE250 platform 
at Shanghai Personal Biotechnology Co., Ltd., Shanghai, 
China. The high-throughput sequencing raw data of phyllo-
sphere and rhizosphere microbes were uploaded in the NCBI 
database with the SRA accession numbers of PRJNA689361 
and PRJNA689392.

Bioinformation Analysis

After removing primers and barcode sequences with cuta-
dapt, quality filter, denoise, joint, and removal of chimeras, 
the high-quality sequences were finally obtained. Sequences 
with ≥97% similarity were assigned to the same OTU. The 
Silva Database for bacteria (Release132, http://​www.​arb-​
silva.​de) [64] and Unite Database for fungi (Release 8.0, 
https://​unite.​ut.​ee/) [46] were used for each representative 
sequence.

Statistical Analysis

One-way analysis of variance (ANOVA) with an LSD test 
was used to identify differences in microbial community 
richness (Chao 1 index, Observed species), diversity (Shan-
non index, Simpson index), and evenness (Pielou_e index) 
among different treatments. Venn diagrams were constructed 
using subsampled data to show the shared and unique OTUs 
in RStudio with the “Venn” package. Linear discrimi-
nant analysis Effect Size (LEfSe) in Galaxy software was 
employed to identify microbial lineages (from the phylum to 
genus) responsible for the differentiation of the phyllosphere 
and rhizosphere microbial communities caused by differ-
ent treatments. Principal coordinate analysis (PCoA) based 
on the Bray-Curtis distance matrix, as one of the classical 
multidimensional scaling, was used to visualize the distinc-
tion of the microbial community structure. Heatmap plots of 
phyllosphere and rhizosphere microbial communities with 
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the relative abundance of top 50 at the genus level were 
performed based on the Bray-Curtis distance matrix using 
RStudio with the package “Vegan”. The co-occurrence pat-
terns of OTUs from different treatments were evaluated 
by network analysis using the “psych” package in RStudio 
based on the Spearman rank correlation, and Gephi software 
was applied to visualize the networks with a Fruchterman-
Reingold layout.

Results

Changes in Phyllosphere and Rhizosphere Microbial 
Community Alpha Diversity

A total of 1,367,262 and 1,174,114 high-quality phyllo-
sphere and rhizosphere bacterial sequences were generated 
across all samples after sequence denoising and quality fil-
tering with the average number of sequences per sample 
91,150 and 78,274, severally, which were assigned into 
11,294 and 18,175 OTUs. The number of shared phyllo-
sphere bacterial OTUs among PPKa, PPKb, and PPKc was 
1306, and the unique OTUs of PPKa, PPKb, and PPKc were 
2400, 3028, and 2862, respectively (Fig. 1A). The number of 

shared rhizosphere bacterial OTUs among RPKa, RPKb, and 
RPKc was 2297, and the unique OTUs of RPKa, RPKb, and 
RPKc were 3416, 3145, and 5437, respectively (Fig. 1B). 
Moreover, the shared OTUs among RPKa, RPKb, RPKc, 
PPKa, PPKb, and PPKc were 13 (Fig. S2A).

The fungal communities were further explored by high-
throughput amplicon sequencing. Across all samples, we 
obtained a total of 1,318,977 and 1,316,090 high-quality phyllo-
sphere and rhizosphere fungal sequences after sequence denois-
ing and quality filtering with the average number of sequences 
per sample 87,739 and 87,931, severally, which were respec-
tively grouped into 1272 and 3190 OTUs. The number of shared 
phyllosphere fungal OTUs among PPKa, PPKb, and PPKc was 
276, and the number of unique OTUs of PPKa, PPKb, and 
PPKc was 599, 846, and 997, respectively (Fig. 1C). The num-
ber of shared rhizosphere fungal OTUs among RPKa, RPKb, 
and RPKc was 269, and the number of unique OTUs of RPKa, 
RPKb, and RPKc was 272, 260, and 245, severally (Fig. 1D). In 
addition, the shared OTUs among RPKa, RPKb, RPKc, PPKa, 
PPKb, and PPKc were 23 (Fig. S2B).

As expected, there was considerable variation of phyl-
losphere bacterial Pielou_e (F = 12.639, P = 0.001), Shan-
non (F = 10.268, P = 0.003), and Simpson index (F = 5.882, 
P = 0.017) among PPKa, PPKb, and PPKc. Furthermore, 

Fig. 1   The Venn diagrams of 
phyllosphere bacterial OTUs 
(A), rhizosphere bacterial OTUs 
(B), phyllosphere fungal OTUs 
(C), and rhizosphere fungal 
OTUs (D). PPKa, the phyllo-
sphere of healthy Pinus koraien-
sis; PPKb, the phyllosphere of 
P. koraiensis naturally infected 
by Bursaphelenchus xylophilus 
at the early stage; PPKc, the 
phyllosphere of P. koraiensis 
naturally infected by Bursap-
helenchus xylophilus at the last 
stage; RPKa, the rhizosphere 
of healthy P. koraiensis; RPKb, 
the rhizosphere of P. koraiensis 
naturally infected by Bursap-
helenchus xylophilus at the early 
stage; RPKc, the rhizosphere of 
P. koraiensis naturally infected 
by Bursaphelenchus xylophilus 
at the last stage
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relative to PPKa and PPKb, PPKc increased phyllosphere bac-
terial Pielou_e, Shannon, and Simpson index with 0.72, 7.83, 
and 0.97, respectively (Table 1). In addition to Goods_cover-
age (F = 3.533, P = 0.062) and Simpson index (F = 3.235, 
P = 0.075), rhizosphere bacterial Observed_species (F = 6.777, 
P = 0.011), Chao 1 (F = 4.655, P = 0.032), Pielou_e (F = 47.496, 
P = 0.0001), and Shannon index (F = 11.772, P = 0.002) were 
observed with significant differences among RPKa, RPKb, 
and RPKc. What’s more, RPKc holds the highest rhizosphere 
bacterial Observed_species, Chao 1, Pielou_e, Shannon, and 
Simpson index with 5384.50, 6916.43, 0.895, 11.09, and 0.9987, 
separately (Table 2). With regard to fungi, phyllosphere fun-
gal Chao 1 index (F = 56.306, P = 0.000), Goods_coverage 
(F = 14.509, P = 0.001), and Observed_species (F = 56.689, 
P = 0.000) differed dramatically among PPKa, PPKb, and 
PPKc, and PPKc holds the highest Chao 1 index with 597.46 
(Table 1). Rhizosphere fungal Pielou_e (F = 12.639, P = 0.001), 
Shannon (F = 10.268, P = 0.003), and Simpson index (F = 5.882, 
P = 0.017) among RPKa, RPKb, and RPKc also appeared 

obviously different. It is well established that RPKc owned 
highest rhizosphere fungal Pielou_e, Shannon, and Simpson 
index with 0.56, 4.66, and 0.89 (Table 2).

Variations in Phyllosphere and Rhizosphere 
Microbial Community Beta Diversity

It is well established that the microbial compositions 
from rhizosphere and phyllosphere samples formed dis-
tinct clusters (Fig. 2), which indicated that the plant com-
partment is a major selective force for the formation of 
plant-related microbial composition. The unconstrained 
principal coordinate analysis (PCoA) of the Bray-Curtis 

distance from all phyllosphere and rhizosphere samples based 
on the OTU data detected 64.9% of the total variance among 
bacterial communities, with the first and second axes explaining 
57.2% and 7.7% of the variance, respectively (Fig. 2A). PCoA 
based on the OTU data detected 67.0% of the total variance of 
fungal communities, with the first and second axes explaining 
55.7% and 11.3% of the variance, respectively (Fig. 2B). As 
expected, the infection of B. xylophilus had a profound effect on 
plant microbe. The results demonstrated that rhizosphere bac-
terial community (Fig. S3A), rhizosphere fungal community 
(Fig. S3C), and phyllosphere fungal community (Fig. S3D) from 
PKa, PKb, and PKc formed three distinct clusters, especially 
along the PCoA1.

Comparative Analysis of Phyllosphere 
and Rhizosphere Microbial Community Composition

For bacteria, at the phylum level, 36 rhizosphere bacterial 
groups were obtained, and 8 bacterial communities with the 

relative abundance more than 1% were detected, including 
Proteobacteria, Actinobacteria, Acidobacteria, Verrucomi-
crobia, Chloroflexi, Gemmatimonadetes, Patescibacte-
ria, Bacteroidetes, and Firmicutes, accounting for 94.75% 
(Fig. 3A). In total, 27 phyllosphere bacterial groups were 
obtained, and 4 bacterial communities with the relative 
abundance more than 1% were obtained, including Proteo-
bacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria 
(Fig. 3B). As for fungi, at the phylum level, 7 rhizosphere 
fungal groups were obtained, and 2 fungal communities 
with the relative abundance more than 1% were detected, 
including Ascomycota and Basidiomycota (Fig. 4A). Four-
teen phyllosphere fungal groups were obtained, and 4 fungal 

Table. 1   Phyllosphere microbial community diversity among PPKa, 
PPKb, and PPKc. PPKa, the phyllosphere of healthy Pinus koraien-
sis; PPKb, the phyllosphere of P. koraiensis naturally infected by 
Bursaphelenchus xylophilus at the early stage; PPKc, the phyllo-

sphere of P. koraiensis naturally infected by Bursaphelenchus xylo-
philus at the last stage. Mean ± standard error, n = 5. Different lower-
case letters in the same row indicate significant differences at the 0.05 
level

Phyllosphere bacterial community diversity PPKa PPKb PPKc F P
Chao 1 index 2050.54 ± 169.79 a 2171.61 ± 272.80 a 2508.21 ± 142.48 a 1.366 0.292
Goods_coverage 0.985 ± 0.001 a 0.985 ± 0.003 a 0.983 ± 0.001a 0.584 0.573
Observed_species 1533.26 ± 126.09 a 1689.48 ± 201.14 a 1927.50 ± 106.01 a 1.749 0.215
Pielou_e index 0.61 ± 0.02 b 0.64 ± 0.01 b 0.72 ± 0.01 a 12.639 0.001
Shannon index 6.40 ± 0.30 b 6.85 ± 0.19 b 7.83 ± 0.19 a 10.268 0.003
Simpson index 0.93 ± 0.01 b 0.95 ± 0.01 ab 0.97 ± 0.00 a 5.882 0.017
Phyllosphere fungal community diversity PPKa PPKb PPKc F P
Chao 1 index 451.26 ± 19.57 c 548.89 ± 20.17 b 597.46 ± 26.21 a 56.306 0.000
Goods_coverage 0.9994 ± 0.0002 a 0.9994 ± 0.0001 a 0.9991 ± 0.000 b 14.509 0.001
Observed_species 441.64 ± 17.76 c 538.74 ± 19.80 b 582.20 ± 25.75 a 56.689 0.000
Pielou_e index 0.653 ± 0.035 a 0.637 ± 0.010 a 0.635 ± 0.009 a 0.976 0.405
Shannon index 5.74 ± 0.33 a 5.78 ± 0.12 a 5.84 ± 0.11 a 0.277 0.763
Simpson index 0.96 ± 0.02 a 0.94 ± 0.01 b 0.95 ± 0.00 ab 3.321 0.071
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communities with the relative abundance more than 1% were 
detected, including Basidiomycota, Ascomycota, Mortierel-
lomycota, and Mucoromycota (Fig. 4B).

At the genus level, 851 rhizosphere bacterial communities 
were obtained, of which, the average relative abundance of 
Candidatus_Udaeobacter, Mycobacterium, Acidothermus, 

AD3, Subgroup_6, KD4–96, Saccharimonadales, Sub-
group_2, Bradyrhizobium, Pseudolabrys, Ellin6067, Burk-
holderia-Caballeronia-Paraburkholderia, Gaiella, Bryobac-
ter, IMCC26256, and 67–14 was more than 1% (Fig. S4A). 
In total, 606 phyllosphere bacterial communities were 
obtained, and the relative abundance of Methylobacterium, 

Table 2   Rhizosphere microbial 
community diversity among 
RPKa, RPKb, and RPKc. 
RPKa, the rhizosphere of 
healthy Pinus koraiensis; 
RPKb, the rhizosphere 
of P. koraiensis naturally 
infected by Bursaphelenchus 
xylophilus at the early stage; 
RPKc, the rhizosphere of P. 
koraiensis naturally infected by 
Bursaphelenchus xylophilus at 
the last stage. Mean ± standard 
error, n = 5. Different lowercase 
letters in the same row indicate 
significant differences at the 
0.05 level

Rhizosphere bacterial 
community diversity

RPKa RPKb RPKc F P

  Chao 1 index 5653.84 ± 174.84 b 5604.88 ± 553.16 b 6916.43 ± 140.37 a 4.655 0.032
  Goods_coverage 0.961 ± 0.002 a 0.962 ± 0.006 a 0.951 ± 0.002 b 3.533 0.062
  Observed_species 4434.48 ± 112.81 b 4445.78 ± 332.54 b 5384.50 ± 91.15 a 6.777 0.011
  Pielou_e index 0.883 ± 0.001 c 0.886 ± 0.001 b 0.895 ± 0.001 a 47.496 0.000
  Shannon index 10.70 ± 0.04 b 10.72 ± 0.10 b 11.09 ± 0.02 a 11.772 0.002
  Simpson index 0.99846 ± 0.0001 b 0.99852 ± 0.0001 ab 0.9987 ± 0.0000 a 3.235 0.075

Rhizosphere fungal com-
munity diversity

RPKa RPKb RPKc F P

  Chao 1 index 287.32 ± 24.81 a 311.38 ± 20.81 a 325.84 ± 11.91 a 0.954 0.412
  Goods_coverage 0.9996 ± 0.0000 a 0.9995 ± 0.0001 a 0.9995 ± 0.0001 a 0.346 0.714
  Observed_species 279.30 ± 24.08 a 300.10 ± 18.09 a 315.14 ± 10.71 a 0.951 0.414
  Pielou_e index 0.45 ± 0.02 b 0.47 ± 0.03 b 0.56 ± 0.01 a 8.837 0.004
  Shannon index 3.63 ± 0.20 b 3.85 ± 0.26 b 4.66 ± 0.10 a 7.825 0.007
  Simpson index 0.76 ± 0.03 b 0.81 ± 0.03 ab 0.89 ± 0.01 a 5.889 0.017

Fig. 2   PCoA (principal 
coordinate analysis) based on 
the Bray-Curtis distance of 
bacterial (A) and fungal (B) 
communities from phyllosphere 
and rhizosphere among different 
samples. PPKa, the phyllo-
sphere of healthy Pinus koraien-
sis; PPKb, the phyllosphere of 
P. koraiensis naturally infected 
by Bursaphelenchus xylophilus 
at the early stage; PPKc, the 
phyllosphere of P. koraiensis 
naturally infected by Bursap-
helenchus xylophilus at the last 
stage; RPKa, the rhizosphere 
of healthy P. koraiensis; RPKb, 
the rhizosphere of P. koraiensis 
naturally infected by Bursap-
helenchus xylophilus at the early 
stage; RPKc, the rhizosphere of 
P. koraiensis naturally infected 
by Bursaphelenchus xylophilus 
at the last stage
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Pantoea, Sphingomonas, 1174–901-12, Hymenobacter, 
Amnibacterium, Massilia, Pseudomonas, Chloroplast, 
Enterobacter, P3OB-42, Rosenbergiella, and Endobacter 
was more than 1% (Fig. S4B). Heatmap demonstrated that 
rhizosphere (Fig. 5A) and phyllosphere (Fig. 5B) bacteria 
from RPKa (PPKa) and RPKb (PPKb) formed a cluster, 
clearly distinguished from those of RPKc (PPKc). For fungi, 
321 rhizosphere fungal communities were obtained, among 
which, the groups with the relative abundance more than 
1% were Didymella, Alternaria, Selenophoma, Septoria, 
Aureobasidium, Genolevuria, Phialemoniopsis, and Taph-
rina (Fig. S4C). In total, 492 phyllosphere fungal communi-
ties were obtained, and the groups with the relative abun-
dance more than 1% were Mortierella, Russula, Sebacina, 
Saitozyma, Suillus, Phialocephala, Chalara, Trechispora, 
Ilyonectria, Solicoccozyma, Trichocladium, Amphinema, 

Penicillium, Fusarium, Umbelopsis, Tomentella, and Exo-
phiala (Fig. S4D). Heatmap demonstrated that rhizosphere 
(Fig. 5C) and phyllosphere (Fig. 5D) fungi from RPKb 
(PPKb) and RPKc (PPKc) formed a cluster, and clearly dis-
tinguished from those of RPKa (PPKa).

Furthermore, we conducted LEfSe analysis to identify 
which microbial taxa (from phylum to genus level) were 
major contributors to the differences in rhizosphere and 
phyllosphere community compositions among different 
samples (Fig. 6). At the phylum level, the larger groups of 
rhizosphere bacteria in RPKa were Actinobacteria, Gem-
matimonadetes, and Patescibacteria, while in RPKb were 
Chloroflexi, Rokubacteria, and Verrucomicrobia, and in 
RPKc were Acidobacteria, Bacteroidetes, and Proteobac-
teria (Kruskal-Wallis test, P < 0.05) (Fig. 6A). The larger 

Fig. 3   The relative abundance of rhizosphere (A) and phyllosphere 
(B) bacterial communities at the phylum level among different sam-
ples. PPKa, the phyllosphere of healthy Pinus koraiensis; PPKb, the 
phyllosphere of P. koraiensis naturally infected by Bursaphelenchus 
xylophilus at the early stage; PPKc, the phyllosphere of P. koraien-
sis naturally infected by Bursaphelenchus xylophilus at the last stage; 
RPKa, the rhizosphere of healthy P. koraiensis; RPKb, the rhizos-
phere of P. koraiensis naturally infected by Bursaphelenchus xylophi-
lus at the early stage; RPKc, the rhizosphere of P. koraiensis naturally 
infected by Bursaphelenchus xylophilus at the last stage

Fig. 4   The relative abundance of rhizosphere (A) and phyllosphere 
(B) fungal communities at the phylum level among different samples. 
PPKa, the phyllosphere of healthy Pinus koraiensis; PPKb, the phyl-
losphere of P. koraiensis naturally infected by Bursaphelenchus xylo-
philus at the early stage; PPKc, the phyllosphere of P. koraiensis nat-
urally infected by Bursaphelenchus xylophilus at the last stage; RPKa, 
the rhizosphere of healthy P. koraiensis; RPKb, the rhizosphere of P. 
koraiensis naturally infected by Bursaphelenchus xylophilus at the 
early stage; RPKc, the rhizosphere of P. koraiensis naturally infected 
by Bursaphelenchus xylophilus at the last stage
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group of phyllosphere bacterial group in PPKa was P roteo-
bacteria, while in PPKb were Acidobacteria, and Chloro-
flexi, and in PPKc were Actinobacteria, Armatimonadetes, 
Bacteroidetes, and Planctomycetes (P < 0.05) (Fig. 6B). 
Additionally, the  rhizosphere  fungi groups of Chalara, 
Basidiomycota,  Mucoromycota, and Staphylotrichum were 

significantly enriched in RPKa, while Rozellomycota, Basid-
iomycota and Arthrocatena were more enriched in RPKc  
as compared to RPKa and RPKb (P < 0.05). The phylum 
Ascomycota was more abundant in RPKb than RPKa and 
RPKc (Fig. 6C). For phyllosphere fungi,  the PPKa con-
tained a significantly higher abundance of Phialemoniopsis 

Fig. 5   Heatmap of rhizosphere bacterial (A), phyllosphere bacterial 
(B), rhizosphere fungal (C), and phyllosphere fungal (D) communi-
ties with the relative abundance at the top 50. PPKa, the phyllosphere 
of healthy Pinus koraiensis; PPKb, the phyllosphere of P. koraiensis 
naturally infected by Bursaphelenchus xylophilus at the early stage; 
PPKc, the phyllosphere of P. koraiensis naturally infected by Bur-

saphelenchus xylophilus at the last stage; RPKa, the rhizosphere 
of healthy P. koraiensis; RPKb, the rhizosphere of P. koraiensis 
naturally infected by Bursaphelenchus xylophilus at the early stage; 
RPKc, the rhizosphere of P. koraiensis naturally infected by Bursap-
helenchus xylophilus at the last stage
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than PPKb and PPKc samples (P < 0.05), while PPKb owned 
higher abundances of Ascomycota and Pseudovirgaria. 
Curvibasidium, Neophaeococcomyces, Selenophoma, and 
Symmetrosporaceae presented higher in RPKc (Fig. 6D).

Microbiological Information Network 
and co‑Occurrence Analysis

In order to further disentangle complex microbe-microbe 
interactions, we created association networks of phyllo-
sphere and rhizosphere bacterial and fungal communities 
from OTU data (Fig. 7; Table S1). Total nodes of phyllo-
sphere and rhizosphere bacterial community association 
network in PKc existed the highest, followed by PKb and 
PKa, and total nodes of phyllosphere and rhizosphere fungal 
community association network in PKb existed the highest, 
followed by PKc and PKa, both indicating that the OTUs 
of the ecological network increased after infection (Fig. 7; 
Table S1). Graph density in the network of PKb, a key topo-
logical property to describe how well a node is connected 
with its neighbors, showed higher than PKa and PKc, sug-
gestive of more intensive microbial coupling at the early 
stage of infection (Fig. 7; Table S1). Except for phyllosphere 
fungi, positive links showed decreased with the infection of 
PWD, and at the last stage, positive links existed the lowest 
(Fig. 7; Table S2), demonstrating that most of the microbial 
taxa tended to be co-excluding rather than co-occurring.

Discussion

Microbial Community Diversity Response 
to Different Samples

Plant microorganisms play critical roles in ecosystem func-
tion, sustainable restoration and management, as well as 
health of many plant species ([  18, 45, 58, 61, 77]. As cli-
mate change and human activity disrupt natural environ-
ments and microbial processes, there is essential to further 
explore the variations of microbe-microbe interactions 
[30] and microbe-host interactions [17]. We investigated 
the microbial community of phyllosphere and rhizosphere 
from healthy and diseased pine trees naturally infected by 
B. xylophilus at the different stages under field conditions. 
In our study, 11,294 and 18,175 phyllosphere and rhizos-
phere bacterial OTUs, and 1272 and 3190 phyllosphere and 
rhizosphere fungal OTUs of healthy and diseased pines were 
detected. In almost all samples, the rhizosphere bacterial 
Chao 1 index, Pielou_e, Shannon, and Simpson index were 
much higher than the respective phyllosphere communities 
(Table 1), which was a common finding in similar studies 
of native and cultivated plants in different environments [8, 
22, 102]. The differences in microbial community diversity 

between the two plant compartments might account for 
the direct influence of their surrounding environment, and 
their fundamental discrimination of physiology and func-
tion [28]. Mounting empirical evidences have suggested 
that root exudates have a strong detrimental role in select-
ing the growth of specific bacteria [10, 88] through signal 
transmission of microbe-microbe and plant-microbe inter-
actions [82], ultimately promoting the differentiation of the 
bacterial assemblages [8]. Additionally, phyllosphere exists 
generally lower bacterial richness and abundance due to the 
fluctuations in environmental pressures [79, 87]. In regard 
to fungal community, phyllosphere fungal community diver-
sity presented higher than rhizosphere fungal community 
diversity (Table 2), which was not in agreement with previ-
ous researches from Chen et al. [14] and Jia et al. [40]. Our 
results nicely demonstrated that the effects of root and leaf 
compartments on the α-diversity indices of fungal commu-
nity were different from those of bacterial community [48, 
73].

What’s more, phyllosphere and rhizosphere micro-
bial community diversity between healthy and infected P. 
koraiensis presented obvious difference. At the early stage 
of the infection, rhizosphere and phyllosphere bacterial 
Pielou_e and Simpson index, rhizosphere fungal Shannon 
and Simpson index, as well as phyllosphere fungal Chao 
1 index exhibited slightly higher than those of healthy P. 
koraiensis (Table 1; Table 2). At the last stage of the infec-
tion, rhizosphere and phyllosphere bacterial Pielou_e, 
Shannon, and Simpson index; rhizosphere fungal Pielou_e, 
Shannon, and Simpson index; and phyllosphere fungal Chao 
1 index existed abundantly higher than those of healthy P. 
koraiensis and the early stage of the infection (Tables 1 and 
2). Our findings were consistent with a previous study from 
Proença et al. [62] who demonstrated that the endophytic 
bacterial diversity of P. pinaster tree was the highest at the 
late stage of pine wood nematode infection, and there was 
no conspicuous difference in bacterial diversity at the early 
stage of the disease, while the research from Ma et al. [52] 
indicated that there were no significant differences of rhizos-
pheric bacterial diversities between healthy and wilted pines. 
Besides another investigation that showed that B. xylophilus 
infection appeared to reduce soil bacterial diversity [69], 
similar findings were reported by Zhang et al. [97] who 
demonstrated that B. xylophilus infection likely decreased 
the richness and diversity of endophytic microbes. It thus 
appeared that the inconsistent results might be due to differ-
ent tree species and the sampling period after the infection 
of PWD. In the present study, we revealed that PWD could 
increase the phyllosphere and rhizosphere bacterial and fun-
gal diversity and the microbial community diversity differed 
as the disease progressed, suggesting the importance of the 
host microbiome in disease development. The differences 
might be caused by the growing abundance of the dominant 
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microbial groups crowding out the weaker microbial groups 
or that microbial species unsuited towards living in infected 
pines disappeared.

Microbial Community Composition Response 
to Different Treatments

As shown by a growing body of works [14, 75, 90], we also 
observed that the microbial compositions from rhizosphere and 
phyllosphere samples formed distinct clusters. Collectively, 
these studies suggested that although the assemblies of root-
associated bacteria and fungi differ substantially from the phyl-
losphere microbial communities, both represent a subset of the 
microbe derived from soil communities and enriched in different 
plant-associated niches [16, 32]. As previous findings indicated 
that the infection of plant pathogens could affect the host micro-
bial community [52, 76], we also documented that the PWD had 
a profound impact on the host rhizosphere bacterial and fungal 
community and phyllosphere fungal community, which was not 
complete in line with previous work that demonstrated that the 
community structure of healthy and diseased trees was only sig-
nificantly different in the roots, and not in the needles and soil 
[52]. It has become evident that root exudates are the essential 
factor determining the structure of the rhizosphere microbial 
community [5, 91]. The occurrence of pine wilt disease can lead 
to a decreased secretion of soluble sugar, total sugar, and protein 
in roots [66], which might have caused the observed difference 
in the microbial community structure in the rhizosphere.

Intriguingly, overall, the bacterial community compo-
sitions were similar (in terms of dominant groups) in all 
samples, different plant compartments at different stages of 
disease dominated mainly by Proteobacteria, followed by 
Actinobacteria, and this finding was consistent with sev-
eral previous studies that displayed that Proteobacteria and 
Actinobacteria were the dominant groups in rhizosphere 
bacterial communities [2, 41] and phyllosphere microorgan-
isms [19, 86]. In addition, these groups represent ubiquitous 
rhizosphere taxa were detected in various stressed environ-
ments [92], while the opposite observations from Pinus 
massoniana infected by B. xylophilus showed that Acido-
bacteria was the predominant species in infected soils [69]. 
Interestingly, due to B. xylophilus infection of P. koraiensis, 

the relative abundances of Acidobacteria, Bacteroidetes, and 
Proteobacteria were significantly higher in diseased pine 
roots, and the shifts of Proteobacteria have been observed 
in previous findings [52], which collectively demonstrated 
that Proteobacteria might be phytopathogens and parasites 
in plant tissues and cause a variety of diseases [44]. The root 
and leaf metabolism of diseased trees was weakened relative 
to the healthy roots and leaves, resulting in a decreased abil-
ity of the root and leaf to adapt to the environment condition 
and it being easily colonized by microbes. Other investi-
gations indicated that Proteobacteria prefer to grow under 
nutrient-rich conditions [24], which might explain the high 
content of Proteobacteria in the diseased roots and leaves. 
The rhizospheric microbial abundance of Bryobacter, RB41, 
and Bradyrhizobium was richer in diseased pines. Our find-
ings were similar to the results in rhizosphere bacterial stud-
ies on P. thunbergii where bacteria in the genus Bradyrhizo-
bium were more abundant in soil of wilted trees than in soil 
of non-infected trees [52].

The abundances of the genus Massilia, Sphingoaurantiacus, 
Acidiphilium, Acetobacteraceae, Singulisphaera, Phascolarc-
tobacterium, and Hymenobacter in diseased needles were sig-
nificantly higher than those in healthy needles, suggesting an 
association of particular microbial abundances with the infection 
of B. xylophilus in P. koraiensis. What’s more, the research from 
Ma et al. [52] demonstrated that Massilia was obviously higher 
in diseased pines, which supported our results to some extent. 
The genus Massilia belongs to the family Oxalobacteraceae of 
the class Betaproteobacteria in the phylum Proteobacteria [1]. 
Members of this genus are characterized as Gram-negative, 
aerobic, non-spore-forming bacteria [99]. Some Massilia can 
produce cell lysis enzymes that promote tissue lysis [55]. This 
may be the reason for the presence of Massilia in a high abun-
dance in diseased needles.

In our study, Ascomycota and Basidiomycota were the 
dominant fungal phyla with phyllosphere and rhizosphere 
samples, and this result was in agreement with previ-
ous research [40]. Similar results were obtained in Taxus 
rhizosphere communities [35] and in tropical grasslands 
[49]. The majorrhizosphere fungal genera in healthy P. 
koraiensis were Penicillium and Trichoderma, in agree-
ment with a study from Zhang et al. [97]. Interestingly, 
Trichoderma is an important genus in biocontrol of 
nematodes because some species produce metabolites 
harmful to nematodes [93]. The enriched phyllosphere 
fungal groups in PPKc were Phaeosphaeriaceae, Wil-
coxina, Pseudocosmospora, and so on. Phaeospha-
eriaceae was commonly associated with plants as 
pathogens, though some are also saprotrophs and 
parasites on powdery mildews [98]. Thus, it can be 
seen that plant-associated microbes could inf luence 
plant health and fitness [94], resistance to pathogens 
[4], and ecosystem services.

Fig. 6   LEfSe analysis to identify which microbial taxa (from phylum 
to genus level) were major contributors to the differences in rhizos-
phere bacterial (A), phyllosphere bacterial (B), rhizosphere fungal 
(C), and phyllosphere fungal (D) community compositions among 
different samples. PPKa, the phyllosphere of healthy Pinus koraien-
sis; PPKb, the phyllosphere of P. koraiensis naturally infected by Bur-
saphelenchus xylophilus at the early stage; PPKc, the phyllosphere of 
P. koraiensis naturally infected by Bursaphelenchus xylophilus at the 
last stage; RPKa, the rhizosphere of healthy P. koraiensis; RPKb, the 
rhizosphere of P. koraiensis naturally infected by Bursaphelenchus 
xylophilus at the early stage; RPKc, the rhizosphere of P. koraiensis 
naturally infected by Bursaphelenchus xylophilus at the last stage

◂
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Shifts of co‑Occurrence Association Network 
Response to Different Treatments

In our study, the co-occurrence network of phyllosphere and 
rhizosphere microbial community demonstrated dynamical 
relationships between healthy P. koraiensis and the infec-
tion of B. xylophilus in P. koraiensis, which could provide 
momentous details of microbial community assembly and 

represent interactions among different populations that regu-
late ecological processes [25]. Total nodes of phyllosphere 
and rhizosphere microbial community association network 
increased after B. xylophilus infection, indicating that the 
populations of the ecological network increased after infec-
tion (Fig. 7; Table S1), resulting in the microbial diversity 
to increase in some degree. The edges of phyllosphere and 
rhizosphere microbial community association network 

Fig. 7   Network interactions 
of bacterial (A) and fungal 
(B) OTUs (OTUs with the 
abundance more than 5) from 
phyllosphere and rhizosphere. 
Each node represents an OTU, 
and colors of the nodes indicate 
different phyla. The OTUs were 
separated into different mod-
ules, shown as circles, by the 
greedy modularity optimization 
method. PPKa, the phyllosphere 
of healthy Pinus koraiensis; 
PPKb, the phyllosphere of P. 
koraiensis naturally infected 
by Bursaphelenchus xylophilus 
at the early stage; PPKc, the 
phyllosphere of P. koraiensis 
naturally infected by Bursap-
helenchus xylophilus at the last 
stage; RPKa, the rhizosphere 
of healthy P. koraiensis; RPKb, 
the rhizosphere of P. koraiensis 
naturally infected by Bursap-
helenchus xylophilus at the early 
stage; RPKc, the rhizosphere of 
P. koraiensis naturally infected 
by Bursaphelenchus xylophilus 
at the last stage

PPKa PPKb PPKc 

RPKa RPKb RPKc 

RPKa RPKb RPKc 

PPKa PPKb PPKc 

A
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existed higher in P. koraiensis infected by B. xylophilus 
than healthy P. koraiensis, which depicted changes among 
nodes, reflecting their responses to environmental perturba-
tions [70]. Furthermore, the role of microbial co-occurrence 
networks is important in revealing the interactions (such 
as through parasitism, competition, and mutualism) that 
exist among different species [21, 100]. In our study, 
except for phyllosphere fungi, positive links of phyllo-
sphere bacteria, rhizosphere bacteria, and fungi decrease 
with the infection of PWD, and at the last stage, positive 
links existed the lowest (Fig. 7; Table S1), demonstrating 
that most of the microbial taxa tended to be in competi-
tion rather than mutualism.

Conclusions

Overall, an increase in diversity with more severe symptomatic 
stage was visible. What’s more, the microbial compositions 
from rhizosphere samples and phyllosphere samples formed 
distinct clusters. Rhizosphere bacterial and fungal community, 
and phyllosphere fungal community from PKa, PKb, and PKc 
formed three distinct clusters, which clearly separated along the 
PCoA1. These findings manifested that the phyllosphere and 
rhizosphere microbial community changed potentially caused 
by B. xylophilus infection of P. koraiensis. Furthermore, LEfSe 
analysis demonstrated that variations of some microbial abun-
dances were associated with the infection of B. xylophilus in P. 
koraiensis, including Bradyrhizobium (rhizosphere bacteria), 
Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyl-
losphere fungi). With the infection of PWD, most of the bacte-
rial taxa tended to be co-excluding rather than co-occurring. 
Together, our results explored PWD could increase the phyl-
losphere and rhizosphere microbial community diversity and 
microbial community composition differed as the disease pro-
gressed, and these changes would correlate with microbial abil-
ity to suppress plant pathogen. This study expanded our knowl-
edge of the ecology of plant-microbe interactions as well as the 
structure and assembly of microbial communities of healthy P. 
koraiensis and the infection of B. xylophilus in P. koraiensis, 
which lay the foundation for studies that aim at improving plant 
growth by altering the plant microbiome.
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