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Abstract

Pine wood nematode, Bursaphelenchus xylophilus, as one of the greatest threats to pine trees, is spreading all over the
world. Plant microorganisms play an important role in the pathogenesis of nematodes. The phyllosphere and rhizosphere
bacterial and fungal communities associated with healthy Pinus koraiensis (PKa) and P. koraiensis infected by B. xylophilus
at the early (PKb) and last (PKc) stages were analyzed. Our results demonstrated that pine wood nematode (PWD) could
increase the phyllosphere bacterial Pielou_e, Shannon, and Simpson index; phyllosphere fungal Chao 1 index, as well as
rhizosphere bacterial Pielou_e, Shannon, and Simpson index; and rhizosphere fungal Pielou_e, Shannon, and Simpson
index. What’s more, slight shifts of the microbial diversity were observed at the early stage of infection, and the microbial
diversity increased significantly as the symptoms of infection worsened. With the infection of B. xylophilus in P. koraien-
sis, Bradyrhizobium (rhizosphere bacteria), Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyllosphere fungi)
were the major contributors to the differences in community compositions among different treatments. With the infection of
PWD, most of the bacterial groups tended to be co-excluding rather than co-occurring. These changes would correlate with
microbial ability to suppress plant pathogen, enhancing the understanding of disease development and providing guidelines
to pave the way for its possible management.

Keywords Pinus koraiensis - Pine wood nematode - Phyllosphere microorganism - Rhizosphere microorganism - Network
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Introduction community structure [56], which in turn affects microbial

communities [9] and ecosystem function [60]. Plant adap-

Terrestrial ecosystems are confronted with more and more
abiotic and bio-disturbances with the acceleration of global
climate change. And extreme climate change aggravates the
emergence of plant diseases and insect pests in global for-
est systems, which has brought great ecological and eco-
nomic challenges [29]. In the forest ecosystem, the loss of
leaves caused by diseases and pests leads to tree dieback
and large-scale forest decline, resulting in changes of forest
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tation to the environment is the result of the integration of
the plant itself and its microbiome, which is essential for
maintaining the function of terrestrial ecosystems [12, 15,
51, 80]. Over the years, pine trees have been confronted with
a severe and devastating disease, pine wilt disease (PWD)
mainly caused by Bursaphelenchus xylophilus [33], namely
the pine wood nematode, which is one of the most serious
conifer diseases worldwide, threatening several species of
pine trees [78], and resulting in profound economic losses
and adverse ecological environmental threat worldwide [67,
78, 85, 95].

Trees infected with PWD have symptoms such as xylem
deformation, resin duct disruption, and cortex and cam-
bium tissue damage, which affect water transportation and
conduction [26], resulting in the decline in photosynthe-
sis, and ultimately leading to discoloration, wilting, and
consequent death of host trees [27]. Given that, the bio-
logical characteristics of PWD [50, 101], the dispersing
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vector [13, 42, 83], and the mechanism of PWD patho-
genicity [63, 103] have become research hot spots. In
addition, there is growing evidence suggesting that during
pathogenesis of B. xylophilus, plant microorganisms play
important roles in host fitness [31, 34, 74, 81, 84]. The
growing amount of data demonstrated that plant-related
bacteria have beneficial effects, promote plant growth,
and improve plant stress and disease resistance [36, 68],
particularly bacterial genera Trichoderma, Serratia, Bacil-
lus, and Esteya which have nematicidal activity through
mechanisms of parasitism or their production of toxic
compounds [53, 89]. In this perspective, there is a press-
ing need to illuminate the variations of plant microbiome
during the disease development [61], advancing our under-
standing of the relationship between plant compartments
and the microbial communities after B. xylophilus infec-
tion, and paving the way for its possible management.

In recent years, the endophytic microbial community of
several B. xylophilus host pine trees, such as Pinus flexi-
lis [11], Pinus contorta [7], Pinus pinaster (Proenca et al.,
2017a), and Pinus sylvestris [38], has been well documented.
It is well established that pine endophytic bacterial diversity
and composition play an important role in regulating plant
response to PWN [3, 54, 61]. However, our understanding of
the significant implications of phyllosphere and rhizosphere
microorganisms remains limited. To the best of our knowl-
edge, phyllosphere and rhizosphere microorganisms are two
important components of plant microflora [39]. Previous
studies have shown that the decline in plant healthy status
or changes in growth conditions caused by host pathogens
could affect the microbial community in leaves and roots of
the host [23, 76, 85]. The phyllosphere microbiome interacts
with the host plant affecting its health and function, and act
as mutualists promoting plant growth and tolerance of envi-
ronmental stressors [72]. The plant healthy status also can
affect the exudates of the plant root, which is the essential
factor affecting the rhizosphere microbial community [37,
96]. The rhizosphere microbial community has an excel-
lent ability to synthesize diverse secondary metabolites in
response to different abiotic and biotic stresses, which is
fundamental to the healthy growth of plants [6, 54]. In
addition, microorganisms also form a complex and diverse
co-occurring network through direct or indirect interac-
tions, and under the action of interspecies relationships
such as symbiosis and competition, they produce positive
and negative directions between each other, which are
closely related to plant resistance [47]. In addition, previ-
ous researches collected the samples were only at one time
point at the last stage of the disease [52]. Therefore, it is
necessary to further investigate the microbial community
at different stages of PWD after PWD occurrence and elu-
cidate the relationship between the plant pathogen and host
microbial community.
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P. koraiensis is widely distributed in Northeast China
(Liaoning, Jilin, and Heilongjiang provinces), Japan, North
Korea, South Korea, Russia, and other countries, with a total
area of about 300,000 km? [59]. P. koraiensis, as a famous
and valuable economic tree species, plays a momentous
ecological environmental value. However, in P. koraiensis,
a main host of B. xylophilus that is generally distributed in
China, the plant microbiome information after PWD infec-
tion under field conditions has been scarcely studied. Here,
the phyllosphere and rhizosphere bacterial and fungal com-
munities in healthy P. koraiensis (PKa) and P. koraiensis
naturally infected by B. xylophilus at the early stage (PKb)
and at the last stage (PKc) of the disease were analyzed by
sequencing 16S rDNA and ITS (internal transcribed spacer)
rDNA using the high-throughput Illumina NovaSeq PE250
to uncover the differences in host microbial community
potentially caused by PWD. In this study, we hypothesized
that [2] PWD could increase the diversity of phyllosphere
and rhizosphere microbial communities that differed as the
infection of B. xylophilus progressed; [3] the host bacterial
and fungal community differed as the infection of B. xylophi-
lus progressed; and [4] with the infection of PWD, most of
the microbial taxa tended to be co-excluding; besides, some
microbial species unsuited towards living in infected pines
disappeared and some species would present. This present
study clarified the shifts of the host microbial community of
P. koraiensis caused by PWD for the first time, so as to bet-
ter understand the relationships between pathogens and the
host microbial community at different stages of PWD after
the occurrence of PWD. What’s more, microbial community
composition and microbial network can be used as biological
indicators at different stages after the occurrence of PWD.

Materials and Methods
Overview of the Research Area

The study area is located at Dengta City, Liaoyang City,
Liaoning Province, China (41°17'44" N, 123°35'47" E).
The climate in this area is characterized as north temperate
continental climate with an annual average temperature of
8.8 °C, annual average precipitation of 600 to 800 mm, and
an annual average frost-free period of 140 to 160 days. The
soil type is classified as Eutrochrepts soil [71]. Five fixed
sites with the same site conditions and soil basic properties
were selected, with an area of 1 ha. Eight healthy P. koraien-
sis trees (PKa), eight diseased P. koraiensis trees infected
by B. xylophilus at the early stage (PKb), and eight diseased
P. koraiensis trees at the last stage (PKc) were selected for
sampling in each site. The distance between diseased and
adjacent healthy trees was less than 15 m. The selection
of healthy and P. koraiensis trees infected by B. xylophilus
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was made in accordance with the method described by Mill-
berg et al. [57], in which the healthy trees were completely
green needles and from which no B. xylophilus was isolated.
The early stage of infection tree refers to needles that have
become slightly wilted and browning of needles. The last
stage of diseased trees was completely dead looking with
brown needles (Fig. S1).

Sample Collection

For the leaf sampling, 24 needle samples were collected
from the tops of the branches from three directions (120°
as the boundary) from 8 trees, and mixed as one replicate
at each site. A total of 15 leaf samples (3 types X 5 repli-
cates) were collected from the study area. With regard to
soil sampling, 24 rhizosphere soils were collected from three
directions from 8 trees, and pooled together as one replica-
tion in each site, resulting in a total of 15 rhizosphere soil
samples (3 types X 5 replicates). All the samples were put in
the icebox and transported to the laboratory for subsequent
analysis.

To analyze the microbial community on the leaves
according to Kembel and Mueller [43], and Ren et al. [65],
10 g of leaf samples from each replicate was cut into pieces
and transferred to a sterile triangle flask. 1:20 (leaf weight/
volume TE buffer =1:20) phosphate-buffered saline solution
(20 ml, PBS, 0.01 M, pH 7.4) was added to each triangle
flask. After sealed with a sterilized film, the samples were
shaken on a shaker at 200 r/min for 30 min at room tempera-
ture, and the microbial cells were separated from the leaf
surface. Vacuum filtration was used in a sterile environment,
and microbes from the oscillating liquid were collected on
a 0.22-pm microporous membrane placed into 2-ml sterile
centrifuge tubes, then stored at —80 °C prior to DNA extrac-
tion. Fresh soil removed plant residues and stone was passed
through a 2-mm sieve and immediately put into 2-ml sterile
centrifuge tubes and frozen at —80 °C for later DNA extrac-
tion and high-throughput sequencing.

DNA Extraction, Amplification, and NovaSeq PE250
Sequencing

Genomic DNA was extracted from microporous membranes
and 0.5 g soil using the FastDNA SPIN Kit for soil (MP
Biomedicals, Santa Ana, CA, USA), in accordance with
the manufacturer’s instructions. The concentrations of
DNA were measured using a NanoDrop ND-1000 spectro-
photometer (Thermo Fisher Scientific, USA). The V3-V4
regions of the bacterial 16S rDNA gene were amplified and
sequenced using the primer pairs 338F (5'-ACTCCTACG
GGAGGCAGCAG-3') and 806R (5'-GGACTACHVGGG
TWTCTAAT-3’") with barcode sequence. And ITS1 regions
of the fungal ITS rDNA gene were amplified using the

primer pairs ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-
3") and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3") with
barcode sequence [20]. All the PCR were carried out with
25-pl mixture, including 2 pl of dNTPs (2.5 mM); 2 pl
DNA template (40-50 ng); 0.25 pl (5 U/pl) of Q5 High-
Fidelity DNA Polymerase; 8.75 pl of ddH,0; 5 pl of Q5
High-Fidelity GC buffer (5%) and Q5 reaction buffer (5x),
respectively, 1 pl (10 uM) of forward primer; and 1 pl (10
uM) of reverse primer. The following PCR thermal cycling
conditions consisted of an initial denaturation step for 5 min
at 98 °C, followed by 25 cycles of denaturation for 15 s at
98 °C, annealing for 30 s at 55 °C, and elongation of 72 °C
for 30 s, with the final elongation step for 5 min at 72 °C.
The PCR amplicons were further purified and quantified by
using Agencourt AMPure Beads (Beckman Coulter, Indi-
anapolis, IN) and PicoGreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA). PCR products for sequencing were
carried out using an Illumina’s NovaSeq PE250 platform
at Shanghai Personal Biotechnology Co., Ltd., Shanghai,
China. The high-throughput sequencing raw data of phyllo-
sphere and rhizosphere microbes were uploaded in the NCBI
database with the SRA accession numbers of PRINA689361
and PRINA689392.

Bioinformation Analysis

After removing primers and barcode sequences with cuta-
dapt, quality filter, denoise, joint, and removal of chimeras,
the high-quality sequences were finally obtained. Sequences
with >97% similarity were assigned to the same OTU. The
Silva Database for bacteria (Release132, http://www.arb-
silva.de) [64] and Unite Database for fungi (Release 8.0,
https://unite.ut.ee/) [46] were used for each representative
sequence.

Statistical Analysis

One-way analysis of variance (ANOVA) with an LSD test
was used to identify differences in microbial community
richness (Chao 1 index, Observed species), diversity (Shan-
non index, Simpson index), and evenness (Pielou_e index)
among different treatments. Venn diagrams were constructed
using subsampled data to show the shared and unique OTUs
in RStudio with the “Venn” package. Linear discrimi-
nant analysis Effect Size (LEfSe) in Galaxy software was
employed to identify microbial lineages (from the phylum to
genus) responsible for the differentiation of the phyllosphere
and rhizosphere microbial communities caused by differ-
ent treatments. Principal coordinate analysis (PCoA) based
on the Bray-Curtis distance matrix, as one of the classical
multidimensional scaling, was used to visualize the distinc-
tion of the microbial community structure. Heatmap plots of
phyllosphere and rhizosphere microbial communities with
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the relative abundance of top 50 at the genus level were
performed based on the Bray-Curtis distance matrix using
RStudio with the package “Vegan”. The co-occurrence pat-
terns of OTUs from different treatments were evaluated
by network analysis using the “psych” package in RStudio
based on the Spearman rank correlation, and Gephi software
was applied to visualize the networks with a Fruchterman-
Reingold layout.

Results

Changes in Phyllosphere and Rhizosphere Microbial
Community Alpha Diversity

A total of 1,367,262 and 1,174,114 high-quality phyllo-
sphere and rhizosphere bacterial sequences were generated
across all samples after sequence denoising and quality fil-
tering with the average number of sequences per sample
91,150 and 78,274, severally, which were assigned into
11,294 and 18,175 OTUs. The number of shared phyllo-
sphere bacterial OTUs among PPKa, PPKb, and PPKc was
1306, and the unique OTUs of PPKa, PPKb, and PPKc were
2400, 3028, and 2862, respectively (Fig. 1 A). The number of

Fig. 1 The Venn diagrams of

phyllosphere bacterial OTUs g -

(A), rhizosphere bacterial OTUs
(B), phyllosphere fungal OTUs
(C), and rhizosphere fungal
OTUs (D). PPKa, the phyllo-
sphere of healthy Pinus koraien-
sis; PPKDb, the phyllosphere of
P. koraiensis naturally infected
by Bursaphelenchus xylophilus
at the early stage; PPKc, the
phyllosphere of P. koraiensis
naturally infected by Bursap-
helenchus xylophilus at the last
stage; RPKa, the rhizosphere

of healthy P. koraiensis; RPKb,
the rhizosphere of P. koraiensis A
naturally infected by Bursap-
helenchus xylophilus at the early e
stage; RPKc, the rhizosphere of

P. koraiensis naturally infected y

by Bursaphelenchus xylophilus 846
at the last stage

3028

PPKa

PPKa
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shared rhizosphere bacterial OTUs among RPKa, RPKb, and
RPKc was 2297, and the unique OTUs of RPKa, RPKb, and
RPKc were 3416, 3145, and 5437, respectively (Fig. 1B).
Moreover, the shared OTUs among RPKa, RPKb, RPKc,
PPKa, PPKb, and PPKc were 13 (Fig. S2A).

The fungal communities were further explored by high-
throughput amplicon sequencing. Across all samples, we
obtained a total of 1,318,977 and 1,316,090 high-quality phyllo-
sphere and rhizosphere fungal sequences after sequence denois-
ing and quality filtering with the average number of sequences
per sample 87,739 and 87,931, severally, which were respec-
tively grouped into 1272 and 3190 OTUs. The number of shared
phyllosphere fungal OTUs among PPKa, PPKb, and PPKc was
276, and the number of unique OTUs of PPKa, PPKb, and
PPKc was 599, 846, and 997, respectively (Fig. 1C). The num-
ber of shared rhizosphere fungal OTUs among RPKa, RPKb,
and RPKc was 269, and the number of unique OTUs of RPKa,
RPKD, and RPKc was 272, 260, and 245, severally (Fig. 1D). In
addition, the shared OTUs among RPKa, RPKb, RPKc, PPKa,
PPKb, and PPKc were 23 (Fig. S2B).

As expected, there was considerable variation of phyl-
losphere bacterial Pielou_e (F=12.639, P=0.001), Shan-
non (F=10.268, P=0.003), and Simpson index (F=5.882,
P=0.017) among PPKa, PPKb, and PPKc. Furthermore,

3145

PPKc RPKa RPKc

260

PPKc RPKa RPKc



Variations of Phyllosphere and Rhizosphere Microbial Communities of Pinus koraiensis Infected. .. 289

relative to PPKa and PPKb, PPKc increased phyllosphere bac-
terial Pielou_e, Shannon, and Simpson index with 0.72, 7.83,
and 0.97, respectively (Table 1). In addition to Goods_cover-
age (F=3.533, P=0.062) and Simpson index (F=3.235,
P=0.075), thizosphere bacterial Observed_species (F=6.777,
P=0.011), Chao 1 (F=4.655, P=0.032), Pielou_e (F=47.496,
P=0.0001), and Shannon index (F=11.772, P=0.002) were
observed with significant differences among RPKa, RPKb,
and RPKc. What’s more, RPKc holds the highest rhizosphere
bacterial Observed_species, Chao 1, Pielou_e, Shannon, and
Simpson index with 5384.50, 6916.43, 0.895, 11.09, and 0.9987,
separately (Table 2). With regard to fungi, phyllosphere fun-
gal Chao 1 index (F=56.306, P=0.000), Goods_coverage
(F=14.509, P=0.001), and Observed_species (F=56.689,
P=0.000) differed dramatically among PPKa, PPKb, and
PPKc, and PPKc holds the highest Chao 1 index with 597.46
(Table 1). Rhizosphere fungal Pielou_e (F=12.639, P=0.001),
Shannon (F=10.268, P=0.003), and Simpson index (F'=5.882,
P=0.017) among RPKa, RPKb, and RPKc also appeared

Table. 1 Phyllosphere microbial community diversity among PPKa,
PPKb, and PPKc. PPKa, the phyllosphere of healthy Pinus koraien-
sis; PPKb, the phyllosphere of P. koraiensis naturally infected by
Bursaphelenchus xylophilus at the early stage; PPKc, the phyllo-

distance from all phyllosphere and rhizosphere samples based
on the OTU data detected 64.9% of the total variance among
bacterial communities, with the first and second axes explaining
57.2% and 7.7% of the variance, respectively (Fig. 2A). PCoA
based on the OTU data detected 67.0% of the total variance of
fungal communities, with the first and second axes explaining
55.7% and 11.3% of the variance, respectively (Fig. 2B). As
expected, the infection of B. xylophilus had a profound effect on
plant microbe. The results demonstrated that rhizosphere bac-
terial community (Fig. S3A), rhizosphere fungal community
(Fig. S3C), and phyllosphere fungal community (Fig. S3D) from
PKa, PKb, and PKc formed three distinct clusters, especially
along the PCoAl.

Comparative Analysis of Phyllosphere
and Rhizosphere Microbial Community Composition

For bacteria, at the phylum level, 36 rhizosphere bacterial
groups were obtained, and 8 bacterial communities with the

sphere of P. koraiensis naturally infected by Bursaphelenchus xylo-
philus at the last stage. Mean =+ standard error, n=>5. Different lower-
case letters in the same row indicate significant differences at the 0.05
level

PPKa
2050.54£169.79 a
0.985+0.001 a
153326 +126.09 a

Phyllosphere bacterial community diversity
Chao 1 index

Goods_coverage

Observed_species

Pielou_e index 0.61+0.02b
Shannon index 6.40+0.30 b
Simpson index 0.93+0.01 b
Phyllosphere fungal community diversity PPKa

Chao 1 index
Goods_coverage

451.26+19.57 ¢
0.9994 +0.0002 a

Observed_species 441.64+17.76 ¢

Pielou_e index 0.653+0.035a
Shannon index 5.74+0.33 a
Simpson index 0.96+0.02 a

PPKb PPKc F P

2171.61£272.80 a 2508.21+142.48 a 1.366 0.292
0.985+0.003 a 0.983+0.001a 0.584 0.573
1689.48+201.14 a 1927.50+106.01 a 1.749 0.215
0.64+0.01b 0.72+0.01 a 12.639 0.001
6.85+0.19b 7.83+0.19a 10.268 0.003
0.95+0.01 ab 0.97+0.00 a 5.882 0.017
PPKb PPKc F P

548.89+20.17 b 597.46+26.21a 56.306 0.000
0.9994 +0.0001 a 0.9991+0.000 b 14.509 0.001
538.74+19.80 b 582.20+£25.75a 56.689 0.000
0.637+0.010 a 0.635+0.009 a 0.976 0.405
5.78+0.12 a 584+0.11a 0.277 0.763
0.94+0.01b 0.95+0.00 ab 3.321 0.071

obviously different. It is well established that RPKc owned
highest rhizosphere fungal Pielou_e, Shannon, and Simpson
index with 0.56, 4.66, and 0.89 (Table 2).

Variations in Phyllosphere and Rhizosphere
Microbial Community Beta Diversity

It is well established that the microbial compositions
from rhizosphere and phyllosphere samples formed dis-
tinct clusters (Fig. 2), which indicated that the plant com-
partment is a major selective force for the formation of
plant-related microbial composition. The unconstrained
principal coordinate analysis (PCoA) of the Bray-Curtis

relative abundance more than 1% were detected, including
Proteobacteria, Actinobacteria, Acidobacteria, Verrucomi-
crobia, Chloroflexi, Gemmatimonadetes, Patescibacte-
ria, Bacteroidetes, and Firmicutes, accounting for 94.75%
(Fig. 3A). In total, 27 phyllosphere bacterial groups were
obtained, and 4 bacterial communities with the relative
abundance more than 1% were obtained, including Proteo-
bacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria
(Fig. 3B). As for fungi, at the phylum level, 7 rhizosphere
fungal groups were obtained, and 2 fungal communities
with the relative abundance more than 1% were detected,
including Ascomycota and Basidiomycota (Fig. 4A). Four-
teen phyllosphere fungal groups were obtained, and 4 fungal
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Table 2 Rhizosphere microbial
community diversity among
RPKa, RPKb, and RPKc.
RPKa, the rhizosphere of
healthy Pinus koraiensis;
RPKbD, the rhizosphere

of P. koraiensis naturally
infected by Bursaphelenchus
xylophilus at the early stage;
RPKc, the rhizosphere of P.
koraiensis naturally infected by
Bursaphelenchus xylophilus at
the last stage. Mean + standard
error, n=>35. Different lowercase
letters in the same row indicate
significant differences at the
0.05 level

Fig.2 PCoA (principal
coordinate analysis) based on
the Bray-Curtis distance of
bacterial (A) and fungal (B)
communities from phyllosphere
and rhizosphere among different
samples. PPKa, the phyllo-
sphere of healthy Pinus koraien-
sis; PPKDb, the phyllosphere of
P. koraiensis naturally infected
by Bursaphelenchus xylophilus
at the early stage; PPKc, the
phyllosphere of P. koraiensis
naturally infected by Bursap-
helenchus xylophilus at the last
stage; RPKa, the rhizosphere

of healthy P. koraiensis; RPKb,
the rhizosphere of P. koraiensis
naturally infected by Bursap-
helenchus xylophilus at the early
stage; RPKc, the rhizosphere of
P. koraiensis naturally infected
by Bursaphelenchus xylophilus
at the last stage

communities with the relative abundance more than 1% were
detected, including Basidiomycota, Ascomycota, Mortierel-

Rhizosphere bacterial RPKa RPKb RPKc F P
community diversity
Chao 1 index 5653.84+174.84 b 5604.88+553.16 b 6916.43+140.37 a 4.655 0.032
Goods_coverage 0.961 +0.002 a 0.962 +0.006 a 0.951+0.002 b 3.533 0.062
Observed_species 443448+112.81b 4445.78 +332.54 b 5384.50+91.15a 6.777 0.011
Pielou_e index 0.883+0.001 ¢ 0.886+0.001 b 0.895+0.001 a 47.496  0.000
Shannon index 10.70+0.04 b 10.72+0.10b 11.09+0.02 a 11.772  0.002
Simpson index 0.99846+0.0001 b 0.99852+0.0001 ab 0.9987 +0.0000 a 3.235 0.075
Rhizosphere fungal com- RPKa RPKb RPKc F P
munity diversity
Chao 1 index 287.32+24.81a 311.38+20.81a 325.84+1191a 0.954 0.412
Goods_coverage 0.9996 +0.0000 a 0.9995 +0.0001 a 0.9995+0.0001 a 0.346 0.714
Observed_species 279.30+24.08 a 300.10£18.09 a 315.14+10.71 a 0.951 0.414
Pielou_e index 0.45+0.02b 0.47+0.03 b 0.56+0.01 a 8.837 0.004
Shannon index 3.63+0.20b 3.85+0.26b 4.66+0.10 a 7.825 0.007
Simpson index 0.76 £0.03 b 0.81+0.03 ab 0.89+0.01 a 5.889 0.017
0.30 4
0.25
0.20
0.15 {
£ 0.0 1
l[: | @ RPKa
= 0057 | m RPKb
S 0.00 | A RPKc
2 005 | 3 Pk
-0.054 |
0104 @ [ ¢ PPKc
-0.15-
-0.20 l
-0.25- A’ {
05 04 03 02 01 00 01 02 03 04 05 06
PCoA1 [57.2%]
A
0.4 a
0.34
0.2
g
= 017 @ RPKa
: A RPKb
< 0.04—— sdop—A—— @ RPKc
Q m PPKa
) # PPKb
-0.14 ; ¢ PPKc
-0.2 @
0.3
06 05 04 03 02 01 00 02 03 0.4 0.5

lomycota, and Mucoromycota (Fig. 4B).

At the genus level, 851 rhizosphere bacterial communities
were obtained, of which, the average relative abundance of
Candidatus_Udaeobacter, Mycobacterium, Acidothermus,
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PCoA1 [55.7%]

B

AD3, Subgroup_6, KD4-96, Saccharimonadales, Sub-
group_2, Bradyrhizobium, Pseudolabrys, Ellin6067, Burk-

holderia-Caballeronia-Paraburkholderia, Gaiella, Bryobac-

ter, IMCC26256, and 67—14 was more than 1% (Fig. S4A).
In total, 606 phyllosphere bacterial communities were
obtained, and the relative abundance of Methylobacterium,
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Pantoea, Sphingomonas, 1174-901-12, Hymenobacter,
Amnibacterium, Massilia, Pseudomonas, Chloroplast,
Enterobacter, P30B-42, Rosenbergiella, and Endobacter
was more than 1% (Fig. S4B). Heatmap demonstrated that
rhizosphere (Fig. 5A) and phyllosphere (Fig. 5B) bacteria
from RPKa (PPKa) and RPKb (PPKb) formed a cluster,
clearly distinguished from those of RPKc (PPKc). For fungi,
321 rhizosphere fungal communities were obtained, among
which, the groups with the relative abundance more than
1% were Didymella, Alternaria, Selenophoma, Septoria,
Aureobasidium, Genolevuria, Phialemoniopsis, and Taph-
rina (Fig. S4C). In total, 492 phyllosphere fungal communi-
ties were obtained, and the groups with the relative abun-
dance more than 1% were Mortierella, Russula, Sebacina,
Saitozyma, Suillus, Phialocephala, Chalara, Trechispora,
Ilyonectria, Solicoccozyma, Trichocladium, Amphinema,
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Fig.3 The relative abundance of rhizosphere (A) and phyllosphere
(B) bacterial communities at the phylum level among different sam-
ples. PPKa, the phyllosphere of healthy Pinus koraiensis; PPKb, the
phyllosphere of P. koraiensis naturally infected by Bursaphelenchus
xylophilus at the early stage; PPKc, the phyllosphere of P. koraien-
sis naturally infected by Bursaphelenchus xylophilus at the last stage;
RPKa, the rhizosphere of healthy P. koraiensis; RPKb, the rhizos-
phere of P. koraiensis naturally infected by Bursaphelenchus xylophi-
lus at the early stage; RPKc, the rhizosphere of P. koraiensis naturally
infected by Bursaphelenchus xylophilus at the last stage

Penicillium, Fusarium, Umbelopsis, Tomentella, and Exo-
phiala (Fig. S4D). Heatmap demonstrated that rhizosphere
(Fig. 5C) and phyllosphere (Fig. 5D) fungi from RPKb
(PPKb) and RPKc (PPKc) formed a cluster, and clearly dis-
tinguished from those of RPKa (PPKa).

Furthermore, we conducted LEfSe analysis to identify
which microbial taxa (from phylum to genus level) were
major contributors to the differences in rhizosphere and
phyllosphere community compositions among different
samples (Fig. 6). At the phylum level, the larger groups of
rhizosphere bacteria in RPKa were Actinobacteria, Gem-
matimonadetes, and Patescibacteria, while in RPKb were
Chloroflexi, Rokubacteria, and Verrucomicrobia, and in
RPKc were Acidobacteria, Bacteroidetes, and Proteobac-
teria (Kruskal-Wallis test, P <0.05) (Fig. 6A). The larger
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Fig.4 The relative abundance of rhizosphere (A) and phyllosphere
(B) fungal communities at the phylum level among different samples.
PPKa, the phyllosphere of healthy Pinus koraiensis; PPKb, the phyl-
losphere of P. koraiensis naturally infected by Bursaphelenchus xylo-
philus at the early stage; PPKc, the phyllosphere of P. koraiensis nat-
urally infected by Bursaphelenchus xylophilus at the last stage; RPKa,
the rhizosphere of healthy P. koraiensis; RPKb, the rhizosphere of P.
koraiensis naturally infected by Bursaphelenchus xylophilus at the
early stage; RPKc, the rhizosphere of P. koraiensis naturally infected
by Bursaphelenchus xylophilus at the last stage
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of healthy Pinus koraiensis; PPKb, the phyllosphere of P. koraiensis
naturally infected by Bursaphelenchus xylophilus at the early stage;
PPKc, the phyllosphere of P. koraiensis naturally infected by Bur-

group of phyllosphere bacterial group in PPKa was P roteo-
bacteria, while in PPKb were Acidobacteria, and Chloro-
flexi, and in PPKc were Actinobacteria, Armatimonadetes,
Bacteroidetes, and Planctomycetes (P <0.05) (Fig. 6B).
Additionally, the rhizosphere fungi groups of Chalara,
Basidiomycota, Mucoromycota, and Staphylotrichum were
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saphelenchus xylophilus at the last stage; RPKa, the rhizosphere
of healthy P. koraiensis; RPKb, the rhizosphere of P. koraiensis
naturally infected by Bursaphelenchus xylophilus at the early stage;
RPKc, the rhizosphere of P. koraiensis naturally infected by Bursap-
helenchus xylophilus at the last stage

significantly enriched in RPKa, while Rozellomycota, Basid-
iomycota and Arthrocatena were more enriched in RPKc
as compared to RPKa and RPKb (P <0.05). The phylum
Ascomycota was more abundant in RPKb than RPKa and
RPKc (Fig. 6C). For phyllosphere fungi, the PPKa con-
tained a significantly higher abundance of Phialemoniopsis
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than PPKb and PPKc samples (P <0.05), while PPKb owned
higher abundances of Ascomycota and Pseudovirgaria.
Curvibasidium, Neophaeococcomyces, Selenophoma, and
Symmetrosporaceae presented higher in RPKc (Fig. 6D).

Microbiological Information Network
and co-Occurrence Analysis

In order to further disentangle complex microbe-microbe
interactions, we created association networks of phyllo-
sphere and rhizosphere bacterial and fungal communities
from OTU data (Fig. 7; Table S1). Total nodes of phyllo-
sphere and rhizosphere bacterial community association
network in PKc existed the highest, followed by PKb and
PKa, and total nodes of phyllosphere and rhizosphere fungal
community association network in PKb existed the highest,
followed by PKc and PKa, both indicating that the OTUs
of the ecological network increased after infection (Fig. 7;
Table S1). Graph density in the network of PKb, a key topo-
logical property to describe how well a node is connected
with its neighbors, showed higher than PKa and PKc, sug-
gestive of more intensive microbial coupling at the early
stage of infection (Fig. 7; Table S1). Except for phyllosphere
fungi, positive links showed decreased with the infection of
PWD, and at the last stage, positive links existed the lowest
(Fig. 7; Table S2), demonstrating that most of the microbial
taxa tended to be co-excluding rather than co-occurring.

Discussion

Microbial Community Diversity Response
to Different Samples

Plant microorganisms play critical roles in ecosystem func-
tion, sustainable restoration and management, as well as
health of many plant species ([ 18, 45, 58, 61, 77]. As cli-
mate change and human activity disrupt natural environ-
ments and microbial processes, there is essential to further
explore the variations of microbe-microbe interactions
[30] and microbe-host interactions [17]. We investigated
the microbial community of phyllosphere and rhizosphere
from healthy and diseased pine trees naturally infected by
B. xylophilus at the different stages under field conditions.
In our study, 11,294 and 18,175 phyllosphere and rhizos-
phere bacterial OTUs, and 1272 and 3190 phyllosphere and
rhizosphere fungal OTUs of healthy and diseased pines were
detected. In almost all samples, the rhizosphere bacterial
Chao 1 index, Pielou_e, Shannon, and Simpson index were
much higher than the respective phyllosphere communities
(Table 1), which was a common finding in similar studies
of native and cultivated plants in different environments [8,
22, 102]. The differences in microbial community diversity

between the two plant compartments might account for
the direct influence of their surrounding environment, and
their fundamental discrimination of physiology and func-
tion [28]. Mounting empirical evidences have suggested
that root exudates have a strong detrimental role in select-
ing the growth of specific bacteria [10, 88] through signal
transmission of microbe-microbe and plant-microbe inter-
actions [82], ultimately promoting the differentiation of the
bacterial assemblages [8]. Additionally, phyllosphere exists
generally lower bacterial richness and abundance due to the
fluctuations in environmental pressures [79, 87]. In regard
to fungal community, phyllosphere fungal community diver-
sity presented higher than rhizosphere fungal community
diversity (Table 2), which was not in agreement with previ-
ous researches from Chen et al. [14] and Jia et al. [40]. Our
results nicely demonstrated that the effects of root and leaf
compartments on the a-diversity indices of fungal commu-
nity were different from those of bacterial community [48,
73].

What’s more, phyllosphere and rhizosphere micro-
bial community diversity between healthy and infected P.
koraiensis presented obvious difference. At the early stage
of the infection, rhizosphere and phyllosphere bacterial
Pielou_e and Simpson index, rhizosphere fungal Shannon
and Simpson index, as well as phyllosphere fungal Chao
1 index exhibited slightly higher than those of healthy P.
koraiensis (Table 1; Table 2). At the last stage of the infec-
tion, rhizosphere and phyllosphere bacterial Pielou_e,
Shannon, and Simpson index; rhizosphere fungal Pielou_e,
Shannon, and Simpson index; and phyllosphere fungal Chao
1 index existed abundantly higher than those of healthy P.
koraiensis and the early stage of the infection (Tables 1 and
2). Our findings were consistent with a previous study from
Proenca et al. [62] who demonstrated that the endophytic
bacterial diversity of P. pinaster tree was the highest at the
late stage of pine wood nematode infection, and there was
no conspicuous difference in bacterial diversity at the early
stage of the disease, while the research from Ma et al. [52]
indicated that there were no significant differences of rhizos-
pheric bacterial diversities between healthy and wilted pines.
Besides another investigation that showed that B. xylophilus
infection appeared to reduce soil bacterial diversity [69],
similar findings were reported by Zhang et al. [97] who
demonstrated that B. xylophilus infection likely decreased
the richness and diversity of endophytic microbes. It thus
appeared that the inconsistent results might be due to differ-
ent tree species and the sampling period after the infection
of PWD. In the present study, we revealed that PWD could
increase the phyllosphere and rhizosphere bacterial and fun-
gal diversity and the microbial community diversity differed
as the disease progressed, suggesting the importance of the
host microbiome in disease development. The differences
might be caused by the growing abundance of the dominant
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«Fig. 6 LEfSe analysis to identify which microbial taxa (from phylum
to genus level) were major contributors to the differences in rhizos-
phere bacterial (A), phyllosphere bacterial (B), rhizosphere fungal
(C), and phyllosphere fungal (D) community compositions among
different samples. PPKa, the phyllosphere of healthy Pinus koraien-
sis; PPKDb, the phyllosphere of P. koraiensis naturally infected by Bur-
saphelenchus xylophilus at the early stage; PPKc, the phyllosphere of
P. koraiensis naturally infected by Bursaphelenchus xylophilus at the
last stage; RPKa, the rhizosphere of healthy P. koraiensis; RPKb, the
rhizosphere of P. koraiensis naturally infected by Bursaphelenchus
xylophilus at the early stage; RPKc, the rhizosphere of P. koraiensis
naturally infected by Bursaphelenchus xylophilus at the last stage

microbial groups crowding out the weaker microbial groups
or that microbial species unsuited towards living in infected
pines disappeared.

Microbial Community Composition Response
to Different Treatments

As shown by a growing body of works [14, 75, 90], we also
observed that the microbial compositions from rhizosphere and
phyllosphere samples formed distinct clusters. Collectively,
these studies suggested that although the assemblies of root-
associated bacteria and fungi differ substantially from the phyl-
losphere microbial communities, both represent a subset of the
microbe derived from soil communities and enriched in different
plant-associated niches [16, 32]. As previous findings indicated
that the infection of plant pathogens could affect the host micro-
bial community [52, 76], we also documented that the PWD had
a profound impact on the host rhizosphere bacterial and fungal
community and phyllosphere fungal community, which was not
complete in line with previous work that demonstrated that the
community structure of healthy and diseased trees was only sig-
nificantly different in the roots, and not in the needles and soil
[52]. It has become evident that root exudates are the essential
factor determining the structure of the rhizosphere microbial
community [5, 91]. The occurrence of pine wilt disease can lead
to a decreased secretion of soluble sugar, total sugar, and protein
in roots [66], which might have caused the observed difference
in the microbial community structure in the rhizosphere.
Intriguingly, overall, the bacterial community compo-
sitions were similar (in terms of dominant groups) in all
samples, different plant compartments at different stages of
disease dominated mainly by Proteobacteria, followed by
Actinobacteria, and this finding was consistent with sev-
eral previous studies that displayed that Proteobacteria and
Actinobacteria were the dominant groups in rhizosphere
bacterial communities [2, 41] and phyllosphere microorgan-
isms [19, 86]. In addition, these groups represent ubiquitous
rhizosphere taxa were detected in various stressed environ-
ments [92], while the opposite observations from Pinus
massoniana infected by B. xylophilus showed that Acido-
bacteria was the predominant species in infected soils [69].
Interestingly, due to B. xylophilus infection of P. koraiensis,

the relative abundances of Acidobacteria, Bacteroidetes, and
Proteobacteria were significantly higher in diseased pine
roots, and the shifts of Proteobacteria have been observed
in previous findings [52], which collectively demonstrated
that Proteobacteria might be phytopathogens and parasites
in plant tissues and cause a variety of diseases [44]. The root
and leaf metabolism of diseased trees was weakened relative
to the healthy roots and leaves, resulting in a decreased abil-
ity of the root and leaf to adapt to the environment condition
and it being easily colonized by microbes. Other investi-
gations indicated that Proteobacteria prefer to grow under
nutrient-rich conditions [24], which might explain the high
content of Proteobacteria in the diseased roots and leaves.
The rhizospheric microbial abundance of Bryobacter, RB41,
and Bradyrhizobium was richer in diseased pines. Our find-
ings were similar to the results in rhizosphere bacterial stud-
ies on P. thunbergii where bacteria in the genus Bradyrhizo-
bium were more abundant in soil of wilted trees than in soil
of non-infected trees [52].

The abundances of the genus Massilia, Sphingoaurantiacus,
Acidiphilium, Acetobacteraceae, Singulisphaera, Phascolarc-
tobacterium, and Hymenobacter in diseased needles were sig-
nificantly higher than those in healthy needles, suggesting an
association of particular microbial abundances with the infection
of B. xylophilus in P. koraiensis. What's more, the research from
Ma et al. [52] demonstrated that Massilia was obviously higher
in diseased pines, which supported our results to some extent.
The genus Massilia belongs to the family Oxalobacteraceae of
the class Betaproteobacteria in the phylum Proteobacteria [1].
Members of this genus are characterized as Gram-negative,
aerobic, non-spore-forming bacteria [99]. Some Massilia can
produce cell lysis enzymes that promote tissue lysis [55]. This
may be the reason for the presence of Massilia in a high abun-
dance in diseased needles.

In our study, Ascomycota and Basidiomycota were the
dominant fungal phyla with phyllosphere and rhizosphere
samples, and this result was in agreement with previ-
ous research [40]. Similar results were obtained in Taxus
rhizosphere communities [35] and in tropical grasslands
[49]. The majorrhizosphere fungal genera in healthy P.
koraiensis were Penicillium and Trichoderma, in agree-
ment with a study from Zhang et al. [97]. Interestingly,
Trichoderma is an important genus in biocontrol of
nematodes because some species produce metabolites
harmful to nematodes [93]. The enriched phyllosphere
fungal groups in PPKc were Phaeosphaeriaceae, Wil-
coxina, Pseudocosmospora, and so on. Phaeospha-
eriaceae was commonly associated with plants as
pathogens, though some are also saprotrophs and
parasites on powdery mildews [98]. Thus, it can be
seen that plant-associated microbes could influence
plant health and fitness [94], resistance to pathogens
[4], and ecosystem services.
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Fig.7 Network interactions

of bacterial (A) and fungal

(B) OTUs (OTUs with the
abundance more than 5) from
phyllosphere and rhizosphere.
Each node represents an OTU,
and colors of the nodes indicate
different phyla. The OTUs were
separated into different mod-
ules, shown as circles, by the
greedy modularity optimization
method. PPKa, the phyllosphere
of healthy Pinus koraiensis;
PPKb, the phyllosphere of P.
koraiensis naturally infected

by Bursaphelenchus xylophilus
at the early stage; PPKc, the
phyllosphere of P. koraiensis
naturally infected by Bursap-
helenchus xylophilus at the last
stage; RPKa, the rhizosphere
of healthy P. koraiensis; RPKb,
the rhizosphere of P. koraiensis
naturally infected by Bursap-
helenchus xylophilus at the early
stage; RPKc, the rhizosphere of
P. koraiensis naturally infected
by Bursaphelenchus xylophilus
at the last stage

Shifts of co-Occurrence Association Network
Response to Different Treatments

In our study, the co-occurrence network of phyllosphere and
rhizosphere microbial community demonstrated dynamical
relationships between healthy P. koraiensis and the infec-
tion of B. xylophilus in P. koraiensis, which could provide
momentous details of microbial community assembly and

@ Springer

represent interactions among different populations that regu-
late ecological processes [25]. Total nodes of phyllosphere
and rhizosphere microbial community association network
increased after B. xylophilus infection, indicating that the
populations of the ecological network increased after infec-
tion (Fig. 7; Table S1), resulting in the microbial diversity
to increase in some degree. The edges of phyllosphere and
rhizosphere microbial community association network



Variations of Phyllosphere and Rhizosphere Microbial Communities of Pinus koraiensis Infected. .. 297

existed higher in P. koraiensis infected by B. xylophilus
than healthy P. koraiensis, which depicted changes among
nodes, reflecting their responses to environmental perturba-
tions [70]. Furthermore, the role of microbial co-occurrence
networks is important in revealing the interactions (such
as through parasitism, competition, and mutualism) that
exist among different species [21, 100]. In our study,
except for phyllosphere fungi, positive links of phyllo-
sphere bacteria, rhizosphere bacteria, and fungi decrease
with the infection of PWD, and at the last stage, positive
links existed the lowest (Fig. 7; Table S1), demonstrating
that most of the microbial taxa tended to be in competi-
tion rather than mutualism.

Conclusions

Overall, an increase in diversity with more severe symptomatic
stage was visible. What’s more, the microbial compositions
from rhizosphere samples and phyllosphere samples formed
distinct clusters. Rhizosphere bacterial and fungal community,
and phyllosphere fungal community from PKa, PKb, and PKc
formed three distinct clusters, which clearly separated along the
PCoAl. These findings manifested that the phyllosphere and
rhizosphere microbial community changed potentially caused
by B. xylophilus infection of P. koraiensis. Furthermore, LEfSe
analysis demonstrated that variations of some microbial abun-
dances were associated with the infection of B. xylophilus in P.
koraiensis, including Bradyrhizobium (thizosphere bacteria),
Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyl-
losphere fungi). With the infection of PWD, most of the bacte-
rial taxa tended to be co-excluding rather than co-occurring.
Together, our results explored PWD could increase the phyl-
losphere and rhizosphere microbial community diversity and
microbial community composition differed as the disease pro-
gressed, and these changes would correlate with microbial abil-
ity to suppress plant pathogen. This study expanded our knowl-
edge of the ecology of plant-microbe interactions as well as the
structure and assembly of microbial communities of healthy P.
koraiensis and the infection of B. xylophilus in P. koraiensis,
which lay the foundation for studies that aim at improving plant
growth by altering the plant microbiome.
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