[1] Qu LR, Wang C*, Manzoni S, et al. Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. The ISME Journal. 2024, 18(1), wrae025.
[2] Xu Wang, Chao Wang*, Xianlei Fan, Lifei Sun, Changpeng Sang, Xugao Wang, Ping Jiang, Yuting Fang, Edith Bai*. (2024). Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils: Insights from an isotope tracing model. Global Change Biology, 2024, 30(1): e17156.
[3] Wang C*, Wang X, Zhang Y, Morrissey E, Liu Y, Sun LF, Qu LR, Sang CP, Zhang H, Li GC*, Zhang LL, Fang YT. Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. 2023. ISME Communications, 3, 86. Doi: 10.1038/s43705-023-00300-1.
[4] Sun LF*, Moorhead DL, Cui YX*, Wanek W, Li SL, Wang C. Exogenous nitrogen input skews estimates of microbial nitrogen use efficiency by ecoenzymatic stoichiometry. 2023. Ecologibal Process, 12, 46. Doi: 10.1186/s13717-023-00457-6.
[5] Sun LF, Li J, Qu LR, Wang X, Sang CP, Wang J, Sun MZ, Wanek W, Moorhead DL, Bai E, Wang C*. 2023. Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments. Geoderma, 432, 116416.
[6] Wang ZT, Yang JY, Wang C, Bai E*. 2022. Oxygen gas derived oxygen does not affect the accuracy of 18O-labelled water approach for microbial carbon use efficiency. Soil Biology and Biochemistry, 168, 108469.
[7] Wang C, Qu LR, Yang LM, Liu DW, Morrissey E, Miao RH, Liu ZP, Wang QK, Fang YT, Bai E*. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27(10), 2039-2048.
[8] Wang X, Dai WW, Filley TR, Wang C, Bai E*. 2021. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry, 161, 108981.
[9] Peng B*, Sun JF*, Liu J, Xia ZW, Dai WW. 2021. Relative contributions of different substrates to soil N2O emission and their responses to N addition in a temperate forest. Science of the Total Environment, 767, 144126.
[10] Li J, Sang CP, Yang JY, Qu LR, Xia ZW, Sun H, Jiang P, Wang XG, He HB, Wang C*. 2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry, 156, 108207.
[11] Sun LF, Wang C*, Yu HM, Liu DW, Houiton BZ, Wang SF, Zeng XF*, Bai E, Fang YT, Jia YF. 2021. Biotic and abiotic controls on dinitrogen production in coastal sediments. Global Biogeochemical Cycles, 35(12), e2021GB007069.
[12] Dai WW, Peng B, Liu J, Wang C, Wang X, Jiang P, Bai E*. 2021. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry, 154(2), 371-383.
[13] Sang CP, Xia ZW*, Sun LF, Sun H, Jiang P, Wang C*, Bai E. 2021. Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest. Ecological Processes, 154(2), 66.
[14] Wang C, Morrissey EM*, Mau RL, Hayer M, Pineiro J, Mack MC, Marks JC, Bell SL, Miller SN, Schwartz E. 2021. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. The ISME Jourmal, 15(9), 2738-2747.
[15] Fan XL, Gao DC, Zhao CH, Wang C, Qu Y, Zhang J, Bai E*. 2022. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. The ISME Journal, 15(8), 2248-2263.
[16] Xia ZW , Yang JY , Sang CP ,Wang X, Bai E*, 2020. Phosphorus Reduces Negative Effects of Nitrogen Addition on Soil Microbial Communities and Functions. Microorganisms, 8(11), 1828.
[17] Chang, Q, Qu, G, Xu, W, Wang, C, Cheng, W, Bai, E*, 2020. Light availability controls rhizosphere priming effect of temperate forest trees. Soil Biology and Biochemistry, 148, 107895.
[18] Wang, X, Wang, C*, Cotrufo, MF, Sun, L, Jiang, P, Liu, Z, Bai, E*, 2020. Elevated temperature increases the accumulation of microbial necromassnitrogen in soil via increasing microbial turnover. Global Change Biology, 26, 5277-5289.
[19] Wang C, Wang X, Pei GT, Xia ZW, Peng B, Sun LF, Wang J, Gao DC, Chen SD, Liu DW, Dai WW, Jiang P, Fang YT, Liang C, Wu NP, Bai E*, 2020. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry, 141, 107687.
[20] Qu LR, Wang C*, Bai E*, 2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology & Biochemistry, 145, 107802.
[21] Pei GT, Liu J, Peng B, Wang C, Jiang P, Bai E*, 2020. Non-linear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005462.
[22] Houlton BZ*, Almaraz M, Aneja V, Austin AT, Bai E, Cassman KG, Compton JE, Davidson EA, Erisman JW, Galloway JN, Gu BJ, Yao G, Martinelli, LA, Scow K, Schlesinger WH, Tomich TP, Wang C, Zhang X, 2019. A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future, 7, 865-872.
[23] Hou JF, Dijkstra FA, Zhang XW, Wang C, L XT, Wang P, Han XG, and Cheng WX*, 2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China. Peer J, 7, e6712.
[24] Sun LF, Sang CP, Wang C, Fan ZZ, Peng B, Jiang P, and Xia ZW*, 2019. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature, Journal of Soils and Sediments, 19, 3499-3511.
[25] Sun LF, Xia ZW, Sang CP, Wang X, Peng B, Wang C, Zhang J, M ller C, Bai E*, 2019. Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture. Biology and Fertility of Soils, 55, 629-641.
[26] Pei GT, Liu J, Peng B, Gao DC, Wang C, Dai WW, Jiang P, and Bai E*, 2019. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem, Forest Ecology and Management, 440, 61-69.
[27] Peng B, Sun JF, Liu J, Dai WW, Sun LF, Pei GT, Gao DC, Wang C, Jiang P, Bai E*, 2019. N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of The Total Environment, 648, 350-357.
[28] Feng J, Wei K, Chen Z, L XT, Tian JH, Wang C, and Chen LJ*, 2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry, Global Biogeochemical Cycles, 33, 559-569.
[29] Wang C, Houlton BZ, Liu DW, Hou JF, Cheng WX, Bai E*, 2018a. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences, 15, 987-995.
[30] Wang C#, Liu DW#, Bai E*, 2018b. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 120, 126-133.
[31] Almaraz M*, #, Bai E #, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ, 2018a. Agriculture is a major source of NOx pollution in California. Science Advances, 4, eaao3477.
[32] Almaraz M*, #, Bai E#, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ, 2018b. Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NOx emissions. Science Advances, 4, eaau7373.
[33] Feng J, Turner BL, Wei K, Tian JH, Chen Z, L XT, Wang C, Chen LJ*, 2018. Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands. Geoderma, 327, 36-44.
[34] Wang C, Houlton BZ, Dai, WW, Bai E*, 2017a. Growth in the global N2 sink attributed to N fertilizer inputs over 1860 to 2000. Science of The Total Environment, 574, 1044-1053.
[35] Wang C, Wei HW, Liu DW, Luo WT, Hou JF, Cheng WX, Han XG, Bai E*, 2017b. Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil, 417, 43-52.
[36] Liu DW, Zhu WX, Wang XB, Pan YP, Wang C, Xi D, Bai E, Wang Y, Han XG, Fang YT*, 2017. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200?km transect. Biogeosciences, 14, 989-1001.
[37] Luo WT, Li MH, Sardans J, Lu XT, Wang C, Penuelas J, Wang ZW, Han XG, Jiang Y*, 2017. Carbon and nitrogen allocation shift in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution, 7, 6927-6934.
[38] Wang C, Liu DW, Luo WT, Fang YT, Wang XB, L XT, Jiang Y, Han XG, Bai E*, 2016. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology, 9, 576-585.
[39] Feng J, Turner BL, L XT, Chen Z, Wei K, Tian JH, Wang C, Luo WT, Chen LJ*, 2016. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemical Cycles, 30, 1264-1275.
[40] Liu J, Wang C, Peng B, Xia ZW, Jiang P, Bai E*, 2016. Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components. Plant and Soil, 412, 453-464.
[41] Luo WT, Dijkstra FA, Bai E, Feng J, L XT, Wang C, Wu HH, Li MH, Han XG*, Jiang Y*, 2016. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry, 127, 141-153.
[42] Wang XB, Van Nostrand JD, Deng Y, L XT, Wang C, Zhou JZ, Han XG*, 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS microbiology ecology, 91, fiv133.
[43] L MK, Xie JS *, Wang C, Guo JF, Wang M, Liu X, Chen Y, Chen GS, Yang YS, 2015. Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biology and Fertility of Soils, 51, 857-867.
[44] Luo WT, Elser JJ, L XT, Wang ZW, Bai E, Yan C, Wang C, Li MH, Zimmermann NE, Han XG, Xu ZW, Li H, Wu Y, Jiang Y*, 2015. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles, 29, 1298-1308.
[45] Wang C#, Wang XB#, Liu D, Wu HH, L XT, Fang YT, Cheng WX, Luo WT, Jiang P, Shi J, Yin H, Zhou JZ, Han XG *, Bai E*, 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 5, 4799.
[46] 杨静怡, 王旭, 孙立飞, 王超*, 白娥. 2020. 氮磷添加对长白山温带森林土壤微生物群落组成和氨基糖的影响. 应用生态学报, 31(6): 1948-1956.
[47] 范珍珍, 王鑫, 王超*, 白娥. 2018. 整合分析氮磷添加对土壤酶活性的影响. 应用生态学报, 29(4): 1266-1272.
[48] 候建峰, 吕晓涛, 王超, 王朋*. 2014. 中国北方草地呼吸的空间变异及成因. 应用生态学报, 25(10): 2840-2846.
[49] 王超, 黄蓉, 杨智杰*, 刘强, 陈光水等. 2012. 万木林保护区柑橘和锥栗土壤呼吸的比较研究. 应用生态学报, 32(6): 1469-1475.
[50] 王超, 黄群斌, 杨智杰*, 黄蓉. 陈光水等. 2011. 杉木人工林不同深度土壤CO2通量初步研究. 生态学报, 31(19): 5711-5719.
[51] 王超, 杨智杰*, 陈光水,范跃新,刘强等. 2011. 万木林保护区毛竹林土壤呼吸特征及影响因素. 应用生态学报, 22(5): 1212-1218.
[52]刘强, 王超, 杨智杰*, 陈光水等. 2011. 福建建瓯万木林柑橘与锥栗凋落物数量、组成及动态. 亚热带资源与环境学报, 6(4): 29-34.
[53] 王超, 杨智杰*, 黄蓉, 刘强, 杨玉盛等. 2011. 中亚热带人工经济林土壤有机碳含量及分布. 亚热带资源与环境学报, 6(2): 36-41.
[54] 黄蓉, 王超, 杨智杰*, 陈光水等. 2011. 万木林青年和老龄常绿阔叶林乔木层碳贮量分配特征. 亚热带资源与环境学报, 6(2): 29-35.
[55] 王超, 杨智杰*, 陈光水, 杨玉盛等. 2010. 土壤垂直剖面的CO2通量研究.亚热带资源与环境学报, 5(4): 85-92.